Moog Valve and Pump Configuration Software

Documentation for Software Version 2.0 October 2013

CONFIDENTIAL The following pages contain proprietary information and are not intended for external publication or disclosure

Moog Intellectual & Proprietary Information Legend

This technical Data/Drawing/Document contains information that is proprietary to, and is the express property of Moog Inc., or Moog Inc. subsidiaries except as expressly granted by contract or by operation of law and is restricted to use by only Moog employees and other persons authorized in writing by Moog or as expressly granted by contract or by operation of law. No portion of this Data/Drawing/Document shall be reproduced or disclosed or copied or furnished in whole or in part to others or used by others for any purpose whatsoever except as specifically authorized in writing by Moog Inc.

©2010 Moog

Agenda

- Startup screen
- Window layout
- Menu bar, Help and Info functions
- General handling
- Set point values
- Inputs section
- Operation modes
- Signal Conditioner
- Controller section
- Store / Restore settings
- Configuration files
- Tools section
- Function Generator
- Parameterization of special functions

Startup screen

- Fieldbus is scanned permanently. All connected CANopen devices are identified and displayed.
- Devices can be selected and configured by clicking an choosing "Select"
- Simulation mode: Devices can be added in offline mode by clicking "Add device"
- Currently supported languages: German and English

Window layout

The window consists of 4 sections (sections are scalable in size)

- Top **Devices** Display and Selection of connected and virtual devices
- Left Inputs Display and Configuration of analog and digital inputs and outputs
- Middle Controller Display of controller structure and tuning of controller
- Right **Tools** Display of status information, errors, data logger etc.

Window layout

Typical steps during commissioning:

- 1. Configuration of external interfaces
- 2. Selection of operation mode and controller
- 3. Diagnosis and Optimization
- 4. Switching between different devices

- → Inputs section
- → Controller section
- → Tools section
- → Devices section

Menu bar

Overview

Help and Info functions

Screen casts / About

General handling

Window sections

maximizes or minimizes the respective section

using the mouse

General handling

LocalMode, ControlWord

В

D

Н

- via Bus: ControlWord has to be send by CAN master
- locally: Control Word is set in valve parameters (e.g. as part of operation mode)

State machine

- INIT: failsafe, no pump funtion
- **DISABLED**: failsafe, e. g. result of a fault reaction
- HOLD: pump in predefined condition
- ACTIVE: normal operation

Current valve state is highlighted in blue

General handling

Signal routing

Functionality

- Signals can be connected/drawn with the mouse
- After selecting a signal, the program indicates automatically (yellow dots), which connections are possible

Set point values

Analog, Bus, HOLD-mode

Inputs section

11+PE cable and analog input module

Inputs section

Analog set points, configuration

click on the specific input opens configuration window

- Select input signal type and signal range
- Information about actual value
- Select cable break configuration

Inputs section

Transducer inputs, configuration

click on the analog input opens the

configuration window

- Select input signal type
- Info: actual input value
- Select cable brake configuration

The parameters 'Cutoff frequency' and 'Order' are used to set the behavior of the Butterworth filter. These parameters are for all pressure parameter sets the same! Cutoff frequency: 50.0000 Order: 3

configuration of pressure filter in controller area

standard setting: Butterworth-filter, 50Hz, 3. order

w.

Inputs section

Transducer interface scaling

Offset: zero adjustment (pump stopped, system without pressure)

Maximum Signal (MS): if 100% system pressure < transducer max value

Pressure Reference Value (PRV): pressure value at 100% system pressure

example: transducer 0-400 bar, 100% system pressure \rightarrow 280bar

-> PRV = 280

Operation modes

Activation, interface selection, operation mode selection

Operation modes

linked pressure transducer and pressure parameter set

Operation modes

ControlWord

example:

- valve is "ACTIVE"
- pressure controller ON
- leakage compensation ON

Control word values

Bit	<controlword></controlword>	Description	Specification
0 1 2	Disabled (D) Hold enable (H) Device mode active enable (M)	These bits form the device control command.	DS 408 (mandatory)
3	Reset fault (R)		
47	Reserved	These bits are reserved for future use. They must be set to 0 in order to ensure upward compatibility.	Reserved
8	Pressure controller enabled (p/Q closed loop control-type only)	If bit 8 is activated, then the pressure controller is enabled in the p/Q control type. Note: This function is applicable only in the p/Q control type.	DS 408
9	Slave mode enable	This bit is used to enable the slave mode of the pump. ⇔ Chapter "7.2.9 Master/Slave operation", page 98	DS 408
10	Leakage compensation enable	This bit is used to enable/disable the leakage compensa- tion.	DS 408
11	Power limitation enable	Enables/disables the power limitation function. ➡ Chapter "7.2.8 Power limitation", page 95	RKP-D specific
12	Reserved	See bits 47.	Reserved
13	Hold pressure enable	Enables/disables the local holding pressure switchover function. ⇔ Chapter "7.2.10 Local holding pressure switchover", page 102.	RKP-D specific
14	Hold pressure forced	Enables/disables externally forcing of the holding pressure switchover. ⇒ Chapter "7.2.10 Local holding pressure switchover", page 102	RKP-D specific
15	Ramp stop	If this bit is activated, ramp output is frozen. ⇔ Chapter "7.1 Demand Value Generator", page 55	RKP-D specific

Signal conditioner

Modify / adjust set point values

Example:

- Q set point limit -50%
- 4-quadrant ramp for pressure

Controller section

Leakage compensation

Leakage compensation

adjustment possibility for leakage compensation to compensate linear pressure depending leakage

unit: %displacement/bar (default 0,01)

Controller section

Pressure controller

pressure controller:

parameter input below the specific symbols

Controller section

Power limitation

power limitation:

parameter input directly below the specific controller block Maximum: input value is percentage of the maximum output power

-> Calculation of maximum motor output power required !

Example: RKP 100, 1500 rpm, 400 bar, eta=90%, 45 kW motor

(maximum motor output power: 100% for Q and p based on valve configuration and efficiency)

 \rightarrow for a 45 kW motor the limit has to be set to 45 kW / 111,1 kW = 40,5%

Store / Restore device settings

Store / restore settings and set start-up default

Configuration files

Import and export of configuration files

import configuration file from storage medium to valve - "load configuration file"

 Import device parameter

 Select a file

 Import device parameter

 All device parameter

 Communication device parameter

 Manufacturer device parameter

 Manufacturer device parameter

 Importable device parameter found

export configuration file from valve to storage medium - "save configuration file"

always select "All device parameter"

Tools section

General Settings

Device description: Device name

LSS information: manufacturer, ID, revision, serial number
Node-ID: possibility to change Node-ID
Firmware: displays current firmware version of the device
Master/Slave: Capability (Solo, Master, Slave)
Flushing time: flushing time for pumps with internal pressure supply

+ buttons to open/close additional areas

Tools section

Device Status

shows information about stroke ring, pressure and pilot valve

- set point value
- actual value
- deviation

Values description

Bit	<statusword></statusword>
0	Disabled (D)
1	Hold activated (H)
2	Device mode active enable (M)
3	Ready (R)
4	Local control
57	Reserved
8	Pressure controller effective
9	Ramp running
10	Limit value reached
11	Control deviation
12	Reserved
13	Flushing mode active
14	Hold pressure set values active
15	Ramp output frozen

Tools section

My device parameter

De My Da FR En Co		
My Device Parameter	C Search 🔸 🗙	nput field to search for parameters
Prs Actual Value Value×(prsval - 0x6381 / 0x01):✓ Value: 9.73%		
1		
in this area, every paramete	er can be added for observation	on
	Tools Description: RKP pump valve	h result ×
	Node Id: 127 Change S H Type: Solo pump - (0) S P	Hold Pressure Trigger Prefix 0x2107 / 0x03 = Pressure Setpoint Value 0x2108 / 0x01
your search term, a list is	De My Da FR En	Pressure Setpoint Prefix 0x2108 / 0x03
displayed	My Device Parameter	C pressure ×
	Prs Actual Value Value (prsval - 0x6381 / 0x01): Value: 9.70%	×

Tools section search for change background color Datalogger parameter name save data start separate start/stop recording window a x Data Logger Search trigger Ready - (3) Samples: 251 Trigger configuration Trigger parameter: configuration Function Gen Square Output 60. 00, (fcnsqr - 0x3102 / 0x00) area Trigger type: Free running trigger - (0) Trigger level: Pre/Post trigger: 0 0 ms Trigger settings: MMMM Trigger coupling dc - (1) Ψ. Trigger slope rising - (1) Υ. Mw m signals and **Recording configuration** Recording length / division: 100 ms scaling Channel 1 Function generator output value (fcndem - 0x3101 / 0x00) configuration Offset: 0 % Height /division: 40 % Channel 2 Stroke ring actual value (splval - 0x6301 / 0x01) 0 % Height /division: Offset: 25 % Channel 3 Actual Valve Pilot Value (splvalplt - 0x3301 / 0x00) 0 % Height /division: 25 % Offset: Channel 4 Current Actual Value (curval - 0x2509 / 0x00) Offset: 0 % Height /division: 25 % 200 300 400 600 800 900 1000ms 100 500 700

Scales for X- and Y-axis

Tools section

Datalogger

My Device	Parameter			
Stroke rin (splval - 0x	g actual value 6301 / 0x01):		×	
Value:	20.70%	D		

left click on information section of the signal you want to record and draw it to the specific data logger channel

enter parameter name in search field and select on which channel you want to record the signal

Left click on information section of a parameter displayed in your parameter list and draw it to the specific data logger channel

fault indication

Tools section

Faults, fault configuration

Example: cable break detection for main stage LVDT

fault reaction: Fault Disabled

fault reaction configuration list in the Tools area available

configuration via pull

down menu directly

at the specific fault

Out of ran	ge fault reaction:	None - (0)
Circuit failu	re fault reaction:	Fault Stop - (127)
_		
Tools		
Description: 111er testven	til bi LSS/IDE: 40/	/269/1/102
Node Id: 127 Change	Firmware: B	99224-DV015-C-a03
Type: Solo pump - (0)		Flushing Time: 180
Do Ny Da ER Se		
Fault Reactions		
Fault Stop - (127)	 Pilot/single stage 	LVDT position out of range
Fault Stop - (127)	● ● Pilot/single stage	LVDT circuit failure
Fault Disabled - (2)	🖉 🍥 🔘 Main stage LVDT o	cable break
None - (0)) Main stage LVDT p	position out of range
Emergency - (1)	Main stage LVDT o	circuit failure
Foult Disabled (2)		
rause produced = (2)	Internal pressure	transducer cable break

Internal pressure transducer pressure peak

You can configure fault reactions for different fault situations

Actual value: -0.48%

Fault monitoring

Fault Stop - (127)

Cable break fault

RKP

-178.30%

-0.48%

Q

Int. LVDT Ext. LVDT

Click: acknowledge fault

Function generator

Configuration

click opens configuration window

connect e.g. as Q set point signal

example

Square function

Magnitude: 20%

Offset: 50%

Frequency: 0,5 Hz (5 x 0,1 Hz)

Parameterization of special functions

Flushing function

Standard setting: 180 s

If you enter a value of 0, the flushing function is deactivated (default setting for pumps with external pressure supply)

Internal Flushing Function

This special function is included in RKP-D models with an internal pressure supply (controller D1, D4, D5 and D8). The RKP-D monitors changes in the set points of pressure (p) and volumetric flow rate (Q). If one of the setpoints is < 1% for 3 minutes, the pilot valve is switched off, goes to its fail-safe-position, and flushes the RKP-D housing. This limits the temperature of the RKP-D. Housing temperatures up to 90°C (195°F) are acceptable and do not damage the RKP-D. To deactivate the flushing function, both set points have to be >1%.

Parameterization of special functions

Master / Slave mode

2 or more pumps deliver to the same hydraulic circuit Only the master pump makes the flow and / or pressure control according to the set point signal for Q and p All slave pumps "follow" the stroke ring signal of the master pump in pure Q-mode

Local CAN Cable necessary

Parameterization of special functions

Master / Slave operation: configuration of Master pump

Example: configure pump as Master with bus termination ON

RKP pump	(P valve	- 127					
• 0	A	Tools	_	_			
		Description: RKP pump valve LSS/II Firmware: B99224-DV015-C-a01 Type: De Ny Da FR En Co	DE: 40/269/1/102 Master pump (bus ter Master pump (bus te	Node Id: 127 mination on) - (-1)	Change Flushing Time: 180		
		Device Status	Solo pump - (0)				
	9-	Current state: The device is in the active stat Status overview: C Chrono	Slave pump 1 (bus to Slave pump 2 - (2) Slave pump 3 - (3)	ermination on) - (1)			
				Pump 1	Pump 2	Pump 3	Pump 4
ndepe	dependent from Master or Slave-		ave-	Master	Slave	Slave	Slave
configunave to	ura o k	ation, the bus terminate be set at the beginning	ors and				
at the e	en	a of the local AIN het	νοΓκ	Pump 1	Pump 2	Pump 3	Pump 4
				Slave	Slave	Master	Slave

Parameterization of special functions

Master / Slave operation: configuration of Slave pump

Example:

Configure pump as Slave with bus termination ON

Activate "Slave enable bit" in ControlWord of first operation mode

Parameterization of special functions

Hybrid operation mode

Combination of RKP and fixed displacement pump (e.g. gear-pump) Control journal optimised for negative flow Rescaling of Q-demand value is done by the software Flow ratio RKP/constant pump max. 100:80

Parameterization of special functions

Hybrid operation mode

example: activate "hybrid operation" in 1. operation mode, flow ratio of fixed displacement pump is 50% of RKP maximum flow

- "Hybrid Flow" input is done in the set point conditioner
- activate hybrid operation in pull down menu of 1. operation mode

Parameterization of special functions

Local transition into hold pressure

Special feature: Local transition into hold pressure with RKP-D in CAN-bus mode:

- Injection moulding machines require high repeatability for the switchover point from speed control to hold pressure control
- Jitters on the CAN bus influence this repeatability
- RKP-D has a build-in "transition into hold pressure"-functionality which is managed by the pump itself

Parameterization of special functions

Local transition into hold pressure

Hold Pressure

 enable trigger force hold pressure setpoints Setpoints in Use 				
Trigger Level	100.0000			
Pressure Setpoint 🚔	0.0000			
Flow Setpoint 🚽	100.0000			

"enable trigger" and "force set points" are set in the ControlWord, set point values and trigger level have to be adjusted in the parameter search list

the parameter names are:

- Trigger Level: hldtrg
- set point value for pressure: hldprsset
- set point value for flow: hldsplset

General rule

With rising motor speed,

2000

Parameterization of special functions

Motor speed dependent adaption of pressure controller

Variant: analog input of motor speed

Transducer input X7: input for motor speed actual value

Configuration of the "general interface"

Link interface to rotation input "R"

Check resulting calculation factor "cmpprsrpm"

Possibility to adjust motor dynamics (time for rotation change)

Parameterization of special functions

Hydraulic capacity dependent adaption of pressure controller

Functionality

Similar to the change of motor speed, there is a new factor for the hydraulic capacity available which causes an automatic adjustment of the pressure controller to adept to the changed system configuration

Hydraulic capacity	100.00%
Hydraulic reference capacity	100.00%

notice

Only one factor can be set on the valve

recommendation: setting reference capacity to 10% enhances the total range (input limit is 200%)

Hydraulic Capacity Value Value	×
(hydcapval - 0x2327 / 0x01):	

✓ Value: 100.00%

```
Hydraulic Capacity Reference Va ×
(hydcapref - 0x2326 / 0x01):
```

✓ Value: 100.00%

In the controller and tools area, the resulting actual factor for rotation speed and hydraulic capacity can be monitored

Correction factor: Actual value	1.6667	
Motor Revolutions Per Minutela (cmpprsrpm - 0x2313 / 0x00):	15 X	cmpprsrpm
Value: 1.6667		

General rule

With rising hydraulic capacity, higher values in the P and D part of the controller are necessary and vice versa

Parameterization of special functions

Robust pressure controller

Functionality

Evaluation of the stroke ring signal in the pressure signal differentiation block

Optimal adjustment of the factor

Setup a test function to apply a rectangular pressure set point signal change in a closed system and observe the result

Adjust feed forward parameter in that way, that output signal of the differentiation block (yellow: flag 12, **"cmpprsdt1**") is in phase with the stroke ring signal (green **"splval**")

Parameterization of special functions

Pressure signal via 2 interfaces

Functionality

Pressure signal for controller input can be calculated by using 2 pressure transducers, each on one side of the cylinder-surface (press application)

For both cases (with and w/o rapid speed cylinder) differential pressure can be calculated with the specific area ratio factors \rightarrow force control

Adjustment

Thank you for your attention

For further information please contact: Name: Email: Phone: