

D660 Baureihe

Proportionalventile mit integrierter 24 Volt Elektronik ISO 4401 Größe 05 bis 10

ALLGEMEINES

D661-D665

KAPITEL	SEITE	SERVO- UND PROPORTIONALVENTILE VON MOOG
Allgemeines	2	Moog produziert seit mehr als 30 Jahren Servo- und Propor-
Vorteile und Funktion	3	tionalventile mit integrierter Elektronik. In dieser Zeit wurden über 200.000 Ventile ausgeliefert.
Allgemeine technische Daten	4	Unsere Servo-und Proportionalventile werden in den verschiedensten Anwendungen des Maschinenbaus erfolgreich einge-
Funktion, Elektronik	5	setzt.
Technische Daten	10	PROPORTIONALVENTILE DER BAUREIHEN D661 BIS D665
Ventilelektronik	25	Die Proportionalventile der Baureihe D660 sind Drosselventile
Failsafe Ausführung	28	für 2-, 3-, 4- oder auch 5-Wege-Anwendungen. Diese Ventile eignen sich zur elektro-hydraulischen Lage-, Ge-
Signal Sollwertverdrahtung	32	schwindigkeits-, Druck- oder Kraftregelung auch bei hohen dynamischen Anforderungen.
Bestellinformation	34	Die Ventile werden ständig weiterentwickelt. Mit der neuen ServoJet Vorsteuerstufe von Moog wurde ein weiterer wichtiger Schritt in Richtung Energieeinsparung und Robustheit vollzogen. Die Vorsteuerstufe nach dem Strahlrohrprinzip, die sich seit über 15 Jahren in verschiedenen Anwendungen bewährt hat, wurde konstruktiv zur ServoJet Vorsteuerstufe weiter entwickelt. Die integrierte Ventilelektronik ist eine Neuentwicklung mit PWM-Treiberendstufe und einer 24 V DC Versorgungsspannung.

Die in dieser Neuauflage des Katalogs beschriebenen Baureihen haben die EMV- Prüfung gemäß EU-Richtlinie bestanden. Bitte beachten Sie die entsprechende Herstellererklärung. Die Ventile der Baureihen **D661K**, **D662K**, **D663K** und **D664K** sind auch für explosionsgefährdete Bereiche, Zündschutzart "d" ("d" Druckfeste Kapselung nach DIN EN 50018) Klasse II 2G EEx d C-C₂H₂ T5, NEMKO 02ATEX272, CE 0123 lieferbar. Achtung: geänderte Einbauabmessungen und anderen elektrischen Anschluss beachten.

HINWEISE

- Vor Inbetriebnahme ist das gesamte System sorgfältig zu spülen und die Druckflüssigkeit (nach ISO 6072) zu filtrieren.
- Die Hinweise zur integrierten Elektronik, Seite 5, 6, 7, 8, 9, 25, 26, 27, 32 und 33 sind unbedingt zu beachten.

Dieser Katalog ist für Anwender mit Sachkenntnissen bestimmt. Um sicherzustellen, dass alle für Funktion und Sicherheit des Systems erforderlichen Randbedingungen erfüllt sind, muss der Anwender die Eignung der hier beschriebenen Geräte überprüfen. Bei Unklarheiten bitten wir um Rücksprache.

Unser Qualitätsmanagementsystem richtet sich nach DIN EN ISO 9001.

VORTEILE UND FUNKTION

D661-D665

VORTEILE DES SERVOJET VORSTEUERVENTILS

- Erhebliche Erhöhung der Nutzvolumenstromausbeute (> 90% des Steuervolumenstroms) hilft bei der Einsparung von Energie, besonders bei Maschinen mit mehreren Ventilen.
- Hohe Dynamik durch hohe Eigenfrequenz (500Hz) der Servo-Jet Vorsteuerstufe.
- Zuverlässige Funktion. Die hohe Druckausbeute der ServoJet Vorsteuerstufe (bis 80% \(\Delta \pi \) bei 100% Eingangssignal) ermöglicht hohe Stellkräfte für den langhubigen Steuerkolben und bewirkt damit, dass dieser auch gegen Schmutz und Strömungskräfte zuverlässig seine vorgegebene Stellung einnimmt.
- Funktionsfähig ab 25 bar Steuerdruck, damit stehen robuste Proportionalventile auch für Niederdrucksysteme, wie z.B. für Turbinenregelungen zur Verfügung.
- Der zum Schutz des ServoJet Vorsteuerventils eingebaute Filter hat durch seine Feinheit von 200 µm nominal eine nahezu unbegrenzte Standzeit.
- Die ServoJet Vorsteuerstufe mit flach verlaufender Druckkennlinie ergibt unkritisches Betriebsverhalten. Die hohe Eigenfrequenz erlaubt hohe Kreisverstärkung für den Ventillageregelkreis mit sehr guten statischen und dynamischen Kennwerten.

VORTEILE DES GESAMTVENTILS

- Ventilkörper für größere Volumenströme, wahlweise mit externem Steuervolumenstrom über Steueranschlüsse X und Y.
- Reduzierte Stufenkolbenstirnflächen bei D662 D665 ergeben folgende Vorteile:
 - Verbesserung der dynamischen Ventildaten
 - Verringerung des Volumenstroms bei schnellen Bewegungsabläufen des Hauptsteuerkolbens
- Failsafe-Ausführung mit definierter Steuerkolbenstellung über Federzentrierung, integriertes Sitzventil in Kurzschluss oder Druckabschaltung.
- Ein- oder zweistufige Vorsteuerung.

Die Verstellung des Steuerkolbens erfolgt entweder über ein einstufiges oder ein zweistufiges Vorsteuerventil. Die Proportionalventile der Baureihe D660 lassen sich damit zweistufig und dreistufig ausführen. Zweistufige Proportionalventile werden hauptsächlich eingesetzt, wenn eine gute Auflösung und ein gutes dynamisches Verhalten im Kleinsignalbereich gefordert sind. Die dreistufigen Proportionalventile eignen sich für sehr gute Dynamik im Großsignalbereich. Durch gezieltes Zusammenfügen von schnellem ServoJet Vorsteuerventil, geeigneter Steuerkolbenstirnfläche und integrierter Elektronik kann für die jeweilige Anwendung ein optimal einsetzbares Proportionalventil angeboten werden.

ARBEITSWEISE DES SERVOJET VORSTEUERVENTILS

Das ServoJet Vorsteuerventil besteht im wesentlichen aus Torquemotor, Strahlrohr und Verteiler.

Ein Strom durch die Spule bewirkt, daß der Anker mit dem Strahlrohr ausgelenkt wird. Der ausgelenkte und über die spezielle Düsenform gebündelte Fluidstrahl beaufschlagt eine der beiden Verteilerbohrungen mehr als die andere.

Dadurch wird ein Druckunterschied in den Steueranschlüssen des Vorsteuerventils erzeugt. Der resultierende Nutzvolumenstrom verstellt den Steuerkolben der Hauptstufe. Der Rücklauf erfolgt über den Ringraum unter der Düse zum Tank.

ARBEITSWEISE DES MEHRSTUFIGEN VENTILS

Der Lageregelkreis für die Hauptstufe mit Wegaufnehmer und Vorsteuerventil wird über die eingebaute Elektronik geschlossen. Ein elektrisches Steuersignal (Volumenstromsollwert = Steuerkolbenstellung-Sollwert) wird auf den integrierten Lageregler gegeben, der den Strom durch die Spule des Vorsteuerventils treibt.

Der über einen Oszillator gespeiste induktive Wegaufnehmer misst die Stellung des Hauptsteuerkolbens (Istwert, Messsignal).

Durch einen Demodulator gleichgerichtet wird dieser Istwert zum Lageregler zurückgeführt und dort mit dem Sollwert verglichen. Der Lageregler steuert das Vorsteuerventil solange an, bis Soll- und Istwert gleich sind. Dadurch ist die Stellung des Hauptsteuerkolbens proportional zum elektrischen Eingangssignal.

ALLGEMEINE TECHNISCHE DATEN

LEISTUNGSSPEZIFIKATIONEN D661 BIS D665 MIT SERVOJET VORSTEUERVENTIL

Betriebsdruckbereich

Anschluss P, A und B bis 350 bar

Anschluss T siehe Daten der Baureihen Steuerdruck min. 25 bar über T oder Y.

max. 350 bar

Temperaturbereich

Umgebung -20 °C bis +60 °C Flüssigkeit -20 °C bis +80 °C Dichtungswerkstoff NBR, FPM,

andere auf Anfrage

Druckflüssigkeit Hydrauliköl auf Mineralöl-

basis nach DIN 51524 Teil 1 bis 3 und ISO 11158, andere Flüssigkeiten auf

Anfrage

Viskosität empfohlen 15 bis 45 mm²/s

zulässig 5 bis 400 mm²/s

Systemfilter

Vorsteuerventil: Hochdruckfilter (ohne Bypass, jedoch mit Verschmutzungsanzeige) im Hauptstrom möglichst direkt vor dem Ventil.

Hauptstufe: Hochdruckfilter wie für das Vorsteuerventil. Bei Einsatz von schnell schaltenden Regelpumpen ist auch eine Nebenstromfiltration möglich.

Sauberkeitsklasse

Die Sauberkeit der Druckflüssigkeit hat großen Einfluss auf Funktionssicherheit (sichere Steuerkolbenpositionierung, hohe Auflösung) und Verschleißschutz (Steuerkanten, Druckverstärkung, Leckverluste) der Proportionalventile.

Empfohlene Sauberkeitsklasse

für Funktionssicherheit ISO 4406 < 19 / 16 / 13 für Lebensdauer (Verschleiß) ISO 4406 < 17 / 14 / 11

Empfohlene Filterfeinheit

Schutzart

für Funktionssicherheit $\beta_{15} \ge 75 \text{ (15 } \mu\text{m absolut)}$ für Lebensdauer (Verschleiß) $\beta_{10} \ge 75 \text{ (10 } \mu\text{m absolut)}$

Montagemöglichkeit jede Lage,

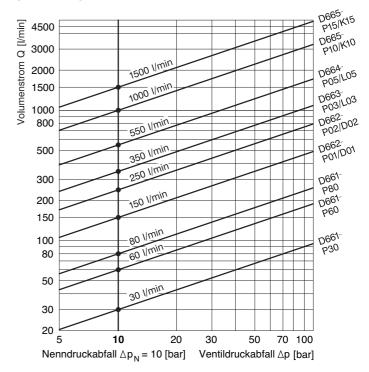
fest oder beweglich
Rüttelfestigkeit 30 g, 3 Achsen, 5Hz ... 2kHz

EN60529: IP 65 mit montier-

tem Gegenstecker

Staubplatte Auslieferung mit

Staubplatte


VOLUMENSTROMBERECHNUNG

Der tatsächliche Volumenstrom Q hängt nicht nur vom elektrischen Eingangssignal, sondern auch vom Druckabfall Δp an den einzelnen Steuerkanten ab.

Bei 100% Sollwertvorgabe (z.B. +10 V = Ventil voll geöffnet) ergibt sich bei einem Nenndruckabfall $\Delta p_N = 5$ bar pro Steuerkante der Nennvolumenstrom Q_N . Verändert man den Druckabfall, so verändert sich bei konstantem Sollwertsignal auch der Volumenstrom Q entsprechend nachstehender Formel für scharfkantige Blenden.

$$\begin{array}{c} Q = Q_N \cdot \sqrt{\frac{\Delta p}{\Delta p_N}} \\ Q \text{ [l/min]} &= \text{tats\"{a}chlicher Volumenstrom} \\ Q_N \text{ [l/min]} &= \text{Nennvolumenstrom} \\ \Delta p \text{ [bar]} &= \text{tats\"{a}chlicher Druckabfall} \\ \Delta p_N \text{ [bar]} &= \text{Nenndruckabfall} \\ \end{array}$$

Der so berechnete tatsächliche Volumenstrom Q sollte in den Anschlußbohrungen P, A, B und T eine mittlere Strömungsgeschwindigkeit von 30 m/s nicht überschreiten.

Volumenstrom - Diagramm

Volumenstrom bei maximaler Ventilöffnung (100% Eingangssignal) in Abhängigkeit vom Ventildruckabfall.

Berechnung des Steuerdrucks

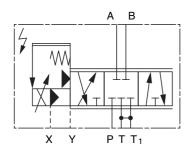
Sind große Volumenströme bei hohem Ventildruckabfall erforderlich, muss ein entsprechend hoher Steuerdruck zur Überwindung der Strömungskräfte gewählt werden. Es kann näherungsweise angesetzt werden:

$$p_x \ge 1.7 \cdot 10^{-2} \cdot \frac{Q}{A_x} \cdot \sqrt{\Delta p}$$

Q [l/min] = max. Volumenstrom

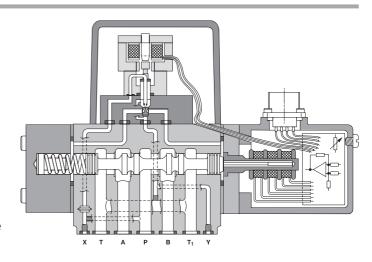
Δp [bar] = Ventildruck bei Q

A_κ [cm²] = Steuerstirnfläche des Kolbens

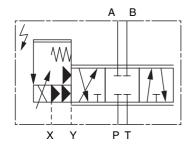

 p_x [bar] = Steuerdruck

Der Steuerdruck p_x muss mindestens 25 bar über dem Rücklaufdruck der Vorsteuerstufe liegen.

FUNKTION

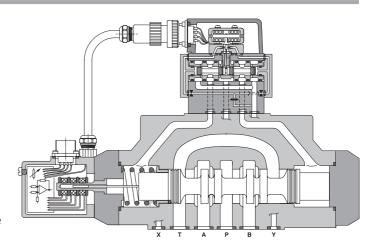

D661-D665

Zweistufiges Proportionalventil der Baureihe D661, Failsafe Typ F in der Stellung A ➡ T



Hydrauliksymbol:

Darstellung im Zustand anstehender Steuerdruck, anliegende Elektronikversorgung mit Freigabe und Signal = null.



Dreistufiges Proportionalventil der Baureihen D663 mit Vorsteuerventil D630, Failsafe Typ F in der Stellung A ➡ T

Hydrauliksymbol:

Darstellung im Zustand anstehender Steuerdruck, anliegende Elektronikversorgung mit Freigabe und Signal = null.

ALLGEMEINE ANFORDERUNGEN FÜR VENTILELEKTRONIK

- Versorgung 24 V DC, minimal 18 V DC, maximal 32 V DC
 Stromaufnahme I_{max.} bei D66X 200 mA stat.
 300 mA dyn.
 - Externe Sicherung je Ventil bei D66X 0,5 A (mittelträge)
- Sämtliche Signalleitungen (auch Messwertaufnehmer) geschirmt.
- Schirmungen sternförmig am Netzteil auf ⊥ (0 V) legen und mit Gegensteckergehäuse leitend verbinden (wegen EMV).
- EMV: erfüllt die Anforderungen für Störaussendung gemäß: EN55011:1998+A1:1999 (Grenzwertklasse: B) und Störfestigkeit gemäß: EN61000-6-2:1999.

- Minimaler Drahtquerschnitt aller Leiter ≥ 0,75 mm².
 Spannungsabfall zwischen Schaltschrank und Ventil berücksichtigen.
- Hinweis: Beim elektrischen Anschluss des Ventils (Schirm, (4)) ist sicherzustellen, dass lokale Potentialunterschiede nicht zu störenden Erdschleifen mit Ausgleichsströmen führen. Siehe auch Moog Technische Notiz TN353.

ELEKTRONIK

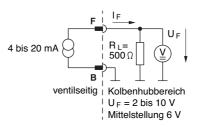
VENTILELEKTRONIK MIT VERSORGUNGSSPANNUNG 24 VOLT UND 6+PE-POLIGEM ANBAUSTECKER

Sollwert 0 bis ±10 mA, potentialfrei, Ventile für Stromsollwert

Der Kolbenhub des Ventils ist proportional $I_D = -I_E$. 100 % Ventilöffnung $P \Rightarrow A$ und $B \Rightarrow T$ bei Sollwert $I_D = +10$ mA. Bei Sollwert 0 mA steht der Steuerkolben in definierter Mittelstellung. Die Eingänge über Steckerstifte D und E sind invertierend. Je nach gewünschter Wirkrichtung wird Steckerstift D oder E angeschlossen. Der andere Steckerstift wird schaltschrankseitig auf Signalquellen-Null gelegt.

Sollwert 0 bis ±10 V

Ventile für Spannungssollwert


Der Kolbenhub des Ventils ist proportional $(U_D - U_E)$. 100 % Ventilöffnung $P \Rightarrow A$ und $B \Rightarrow T$ bei Sollwert $(U_D - U_E) = +10$ V. Bei Sollwert 0 V steht der Steuerkolben in definierter Mittelstellung. Der Eingang ist differentiell beschaltet. Steht statt des differentiellen Sollwertes nur ein Ansteuersignal zur Verfügung, so wird, je nach gewünschter Wirkrichtung, Steckerstift D oder E schaltschrankseitig auf Signalquellen-Null gelegt.

Istwert 4 bis 20 mA

Die Messung des Istwertes, d.h. die Stellung des Steuerkolbens erfolgt am Steckerstift F (Schaltbild oben). Damit steht ein Signal für Überwachung und Fehlerdiagnose zur Verfügung. Der gesamte Kolbenhub entspricht 4 bis 20 mA.

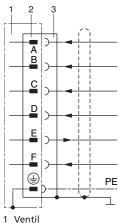
Bei 12 mA steht der Kolben in Mittelstellung. 20 mA entspricht 100 % Ventilöffnung P → A und B → T.

Schaltung für die Messung des Istwertes I_F (Stellung des Steuerkolbens) für Ventile mit 6+PE-poligem Stecker (Signal "M, X, D")

(Bei Signaltyp "D" ist R₁ in der Ventilelektronik)

Mit dem Istwert-Ausgangssignal 4 bis 20 mA läßt sich ein Kabelbruch bei $I_E = 0$ mA erkennen.

Zur leichteren Fehlererkennung sollte der Steckerstift F des Gegensteckers bis zum Schaltschrank verdrahtet werden.


Hinweis zum Freigabesignal

Bei nicht anliegendem bzw. abfallendem Freigabesignal bewegt sich der Hauptsteuerkolben in die sichere Stellung.

- a) Definierte Mittelstellung, Istwerttoleranz ± 3% (unvertrimmtes Vorsteuerventil) Logikfunktion A¹⁾
- b) Sichere Endstellung (vertrimmtes Vorsteuerventil) Logikfunktion B¹⁾
- 1) siehe Typenschlüsse

STECKERBELEGUNG FÜR VENTILE MIT 6+PE-POLIGEM STECKVERBINDER

nach EN 175201 Teil 804, Gegenstecker (Metall) mit voreilendem Schutzleiterkontakt ($\frac{1}{5}$). Siehe auch Signal Sollwertverdrahtung (Seite 32/33, erweiterte Information siehe AM 426 D).

- Ventii
- 2 Anbaustecker
- 3 Gegenstecker

Sig	nalart	Spannungssollwert	Stromsollwert			
А	Versorgung	24 V DC (min. 18 V DC, max. 32 V DC)	statisch: I _{max} : 200 mA dynamisch: I _{max} : 300 mA			
В	Versorgung / Signal-Null	⊥ (0 V)				
С	Freigabe keine Freigabe	C D	nA bei 24 V DC, max. 32 V DC inweis oben)			
D E	Potentialfreier Eingang Sollwert	$U_{D-E}=0$ bis \pm 10 V $R_{e}=10$ k Ω Eingangsspannung U_{D-B} und U_{E-B} für und max. \pm 32 V	$I_D = -I_E$: 0 bis ± 10 mA $(R_e = 200 \ \Omega)$ r beide Signalarten min 15 V			
F	Ausgang Istwert Stellung Steuerkolben	I_{F-B} = 4 bis 20 mA. Bei 12 mA ist der Steuerkolben in Mittelstellung. R _L = 100 bis 500 Ω Bei Signalart D: U _{F-B} = 2 bis 10 V. Bei 6 V ist der Steuerkolben in Mittelstellung. R _L = 500 Ω				
(±)	Schutzleiterkontakt					

Weitere Informationen zum Eingangssignal 6+PE auf Seite 32 und 33.

ELEKTRONIK

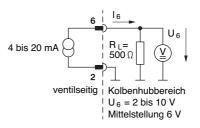
VENTILELEKTRONIK MIT VERSORGUNGSSPANNUNG 24 VOLT UND 11+PE-POLIGEM ANBAUSTECKER

Sollwert 0 bis ±10 mA, potentialfrei, Ventile für Stromsollwert

Der Kolbenhub des Ventils ist proportional $I_4 = -I_5$. 100 % Ventilöffnung P \Rightarrow A und B \Rightarrow T bei Sollwert $I_4 = +10$ mA. Bei Sollwert 0 mA steht der Steuerkolben in definierter Mittelstellung. Die Eingänge über Steckerstifte 4 und 5 sind invertierend. Je nach gewünschter Wirkrichtung wird Steckerstift 4 oder 5 angeschlossen. Der andere Steckerstift wird schaltschrankseitig auf Signalquellen-Null gelegt.

Sollwert 0 bis ±10 V

Ventile für Spannungssollwert


Der Kolbenhub des Ventils ist proportional $(U_4 - U_5)$. 100 % Ventilöffnung $P \Rightarrow A$ und $B \Rightarrow T$ bei Sollwert $(U_4 - U_5) = +10$ V. Bei Sollwert 0 V steht der Steuerkolben in definierter Mittelstellung. Der Eingang ist differentiell beschaltet. Steht statt des differentiellen Sollwertes nur ein Ansteuersignal zur Verfügung, so wird, je nach gewünschter Wirkrichtung, Steckerstift 4 oder 5 schaltschrankseitig auf Signalquellen-Null gelegt.

Istwert 4 bis 20 mA

Die Messung des Istwertes, d.h. die Stellung des Steuerkolbens erfolgt am Steckerstift 6 (Schaltbild oben). Damit steht ein Signal für Überwachung und Fehlerdiagnose zur Verfügung. Der gesamte Kolbenhub entspricht 4 bis 20 mA.

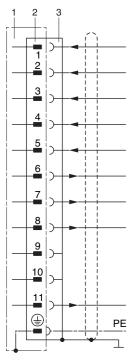
Bei 12 mA steht der Kolben in Mittelstellung. 20 mA entspricht 100 % Ventilöffnung P → A und B → T.

Schaltung für die Messung des Istwertes I₆ (Stellung des Steuerkolbens) für Ventile mit 11+PE-poligem Stecker (Signal "M, X, D")

(Bei Signaltyp "D" ist R₁ in der Ventilelektronik)

Mit dem Istwert-Ausgangssignal 4 bis 20 mA läßt sich ein Kabelbruch bei $I_6 = 0$ mA erkennen.

Zur leichteren Fehlererkennung sollte der Steckerstift 6 des Gegensteckers bis zum Schaltschrank verdrahtet werden.


Hinweis zum Freigabesignal

Bei nicht anliegendem bzw. abfallendem Freigabesignal bewegt sich der Hauptsteuerkolben in die definierte Stellung. Definierte Mittelstellung, Istwerttoleranz \pm 3% (unvertrimmtes Vorsteuerventil) Logikfunktion C, E ¹⁾.

1) siehe Typenschlüssel

STECKERBELEGUNG FÜR VENTILE MIT 11+PE-POLIGEM STECKVERBINDER

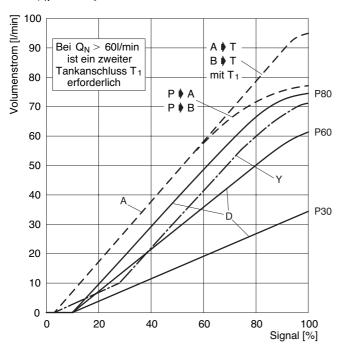
nach EN 175201 Teil 804, Gegenstecker (Metall) mit voreilendem Schutzleiterkontakt ($\frac{1}{4}$). Siehe auch Signal Sollwertverdrahtung (Seite 32/33, erweiterte Information siehe AM 426 D, Logikfunktionn C, E 1)).

- 1 Ventil
- 2 Anbaustecker
- 3 Gegenstecker

Signalart	Spannungssollwert	Stromsollwert				
1 Versorgung	24 V DC (min. 18 V DC, max. 32 V DC) statisch: I _{max} : 200 mA dynamisch: I _{max} : 300 mA					
2 Versorgung / Signal-Null	⊥ (0 V)					
3 Freigabe keine Freigabe	U ₃₋₂ > + 8,5 V DC U ₃₋₂ < + 6,5 V DC	V DC, max. 32 V DC				
4 Potentialfreier 5 Eingang Sollwert	$\begin{array}{l} U_{4-5}=0 \text{ bis \pm 10 V} & I_{4}=-I_{5}\text{: 0 bis \pm 10 mA} \\ R_{e}=10 \text{ k}\Omega & (R_{e}=200 \ \Omega) \\ \\ \text{Eingangsspannung } U_{4-2} \text{ und } U_{5-2} \text{ für beide Signalarten min 15 V} \\ \text{und max. + 32 V} \end{array}$					
6 Ausgang Istwert Stellung Steuerkolben	I_{6-2} = 4 bis 20 mA. Bei 12 mA ist der Steuerkolben in Mittelstellung. R_L = 100 bis 500 Ω Bei Signalart D: U_{6-2} = 2 bis 10 V. Bei 6 V ist der Steuerkolben in Mittelstellung. R_L = 500 Ω					
7 Hilfsmesspunkt	Kolbenstellung: $U_{7-2} = 3$ bis 13 V. Bei 8 V. Mittelstellung. $R_L = 5$ k Ω	/ ist der Steuerkolben in				
8 Ventilbereitschaft	U_{8-2} > +8,5 V DC: Freigabe und Versorgung of U_{8-2} < +6,5 V DC: keine Freigabe oder Versor					
9 nicht belegt						
10 nicht belegt						
11 Logikfunktion	E: U ₁₁₋₂ > +8,5 V DC: < + 30 % Abweicht E: U ₁₁₋₂ < +6,5 V DC: > + 30 % Abweicht Ausgang: I _{max} : 20 mA	J				
Schutzleiterkontakt						

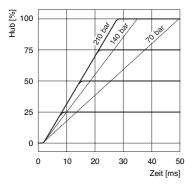
Weitere Informationen zum Eingangssignal 11+PE auf Seite 32 und 33.

Modell Typ			D661 - P/B A	D661 - P/B B		
Lochbild	nach ISO, mit 2. Tankanschluss		ISO 4401 -	ISO 4401 - 05 - 05 - 0 - 94		
Ventilausführung				2-Wege, 5-Wege Standardkolben		
Vorsteuerventil	ServoJet		Standard	High flow		
Steueranschluss	wahlweise intern oder extern**		X und Y	X und Y		
Masse		kg	5,6	5,6		
Nennvolumenstrom	(±10%) bei $\Delta p_N = 5$ bar je Steuerkante	l/min	30 / 60 / 80 / 2 x 80	30 / 60 / 80 / 2 x 80		
Betriebsdruck	max.					
Hauptstufe:	Anschluss P, A, B	bar	350	350		
	Anschluss T bei Y intern	bar	210	210		
	Anschluss T bei Y extern	bar	350	350		
Vorsteuerventil:	Serienausführung	bar	280	280		
	über integrierte Vordrossel (auf Anfrage)	bar	350	350		
Stellzeit*	für 0 bis 100 % Hub, typisch	ms	28	18		
Umkehrspanne*		%	< 0,05	< 0,05		
Hysterese*		%	< 0,3	< 0,3		
Nullverschiebung	bei ∆T = 55 K	%	< 1	< 1		
Leckvolumenstrom*	gesamt max. (~ Null-Überdeckung)	l/min	3,5	4,4		
Leckvolumenstrom*	Vorsteuerstufe allein, typisch	l/min	1,7	2,6		
Steuervolumenstrom*	max., bei 100% Sprungeingang	l/min	1,7	2,6		
Steuerkolbenhub		mm	± 3	± 3		
Steuerstirnfläche		cm ²	2	2		

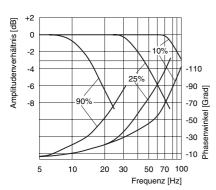

 $^{^*}$ bei 210 bar Steuer- bzw. Betriebsdruck, Ölviskosität 32 mm²/s und Öltemperatur 40 °C ** empfohlener Steueranschluss siehe Hydrauliksymbole

wahlweise X und Y extern	Failsafe-Stellung M bei p _X < 1 bar, nur mit X und Y extern	wahlweise Y extern nur mit x extern	wahlweise X und Y extern
X Y A B PTT1	A B A B A P T T T T T T T T T T T T T T T T T T	Y A B W Y T T T T T T T T T T T T T T T T T T	X Y A B P T P1 T
4-Wege Ausführung (2. Tankanschluß bei $Q_N > 60$ l/min erforderlich)	4-Wege Ausführung federzentriert (2. Tankanschluß bei $Q_N > 60$ l/min erforderlich)	2 x 2-Wege Ausführung	5-Wege Ausführung

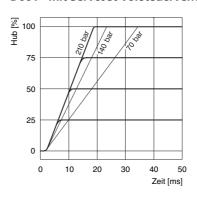
Typische Kennlinien bei 210 bar Steuer- bzw. Betriebsdruck, Ölviskosität 32 mm²/s und Öltemperatur 40°C

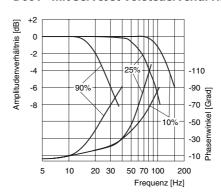

Volumenstrom-Signal-Kennlinien

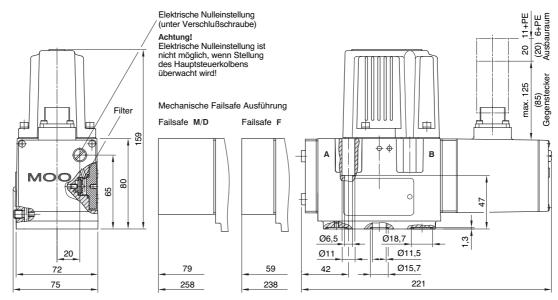
bei $\Delta p_N = 5$ bar je Steuerkante



Steuerkolben A: ~Nullüberdeckung, lineare Kennlinie Steuerkolben D: 10 % pos. Überdeckung, lineare Kennlinie Steuerkolben Y: ~Nullüberdeckung, geknickte Kennlinie

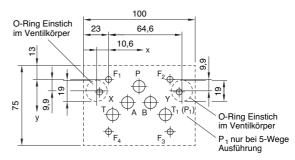

Sprungantwort D661 - mit ServoJet Vorsteuerventil Standard (A)


Frequenzgang
D661 - mit ServoJet Vorsteuerventil Standard (A)


Sprungantwort D661 - mit ServoJet Vorsteuerventil High flow (B)

Frequenzgang
D661 - mit ServoJet Vorsteuerventil High flow (B)

EINBAUZEICHNUNG


Das Lochbild der Montagefläche muss ISO 4401-05-05-0-94 entsprechen.

Achtung: Aufspannlänge min. 100 mm wegen O-Ring-Maße für X und Y beachten.

Für Ventile in 4-Wege - Ausführung mit $Q_N > 60$ l/min und in 2x2-Wege - Ausführung wird der noch nicht genormte zweite Tankanschluss T_1 benötigt.

Für maximalen Volumenstrom Anschlussbohrungen für P, T, A und B entgegen der Norm mit Ø 11,5 mm ausführen.

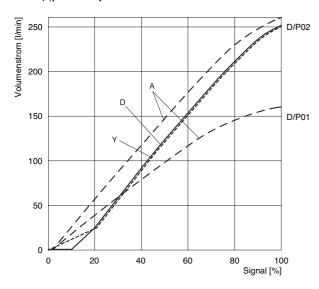
Ebenheit der Montagefläche 0,01 mm auf 100 mm, mittlere Rauhtiefe Ra besser 0,8 µm.

mm

	Р	Α	В	Т	T ₁	Х	Υ	F ₁	F ₂	F ₃	F ₄
	Ø11,5	Ø11,5	Ø11,5	Ø11,5	Ø11,5	Ø6,3	Ø6,3	M6	M6	M6	M6
х	27	16,7	37,3	3,2	50,8	-8	62	0	54	54	0
у	6,3	21,4	21,4	32,5	32,5	11	11	0	0	46	46

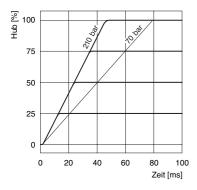
O-Ringe (gehören zum Lieferumfang)			NBR 85 Shore	FPM 85 Shore
für P, T, T ₁ , A, B	5 Stück ID 12,4 x Ø 1,8		-45122-004	-42082-004
für X, Y	2 Stück ID 15,6 x Ø 1,8		-45122-011	-42082-011
O-Ringe bei Filtertausch		HNBR 85 Shore	NBR 85 Shore	FPM 85 Shore
für Filter	1 Stück ID 12 x Ø 2		-66117-012-020	A25163-012-020
für Filterdeckel	1 Stück ID 17,1 x Ø 2,6	B97009-080		-42082-080
Service-Dichtsatz	siehe Seite 28			
Gegenstecker, wasserdicht IP65 (nicht ir	n Lieferumfang)		verwendbares Kabel	mit
6+PE-polig	B97007-061	EN 175201 Teil 804	min. Ø 10 mm, max.	Ø 12 mm
11+PE-polig	B97067-111	EN 175201 Teil 804	min. Ø 11 mm, max.	Ø 13 mm
Spülplatten	für P, A, B, T, T ₁ ,X, Y	für P, T, T₁, X, Y	für P, T, T ₁ und X, Y	
	B67728-001	B67728-002	B67728-003	
Anschlussplatten	auf Anfrage			
Befestigungsschrauben (nicht im Lieferu	mfang)	Anzugsmoment	erforderlich	
M 6 x 60 DIN EN ISO 4762 -10.9	A03665-060-060	11 Nm	4 Stück	
Austauschbarer Filter	A67999-200	200 µm nominal		

NA - J. II T			DCC2 D 4	DCC2 D D	D662 D 14
Modell Typ			D662 - D A	D662 - D B	D662 - P M
Lochbild			ISO 4401-07-06-0-94	ISO 4401-07-06-0-94	ISO 4401-07-06-0-94
Ventilausführung			4-Wege, 2x2-Wege	4-Wege, 2x2-Wege	4-Wege, 2x2-Wege
			2-stufig,	2-stufig,	3-stufig,
			Stufenkolben	Stufenkolben	Standardkolben
Vorsteuerventil			ServoJet Standard	ServoJet High flow	D630, 2-stufig
Steueranschluss	wahlweise intern oder extern**		X und Y	X und Y	X und Y
Masse		kg	11	11	11,5
Nennvolumenstrom	(±10%) bei $\Delta p_N = 5$ bar	l/min	150 / 250	150 / 250	150 / 250
	je Steuerkante				
Betriebsdruck	max.				
Hauptstufe:	Anschluss P, A, B	bar	350	350	350
	Anschluss T bei Y intern	bar	140	140	210
	Anschluss T bei Y extern	bar	350	350	350
Vorsteuerventil:	Serienausführung	bar	280	280	280
	über integrierte Vordrossel	bar	350	350	_
	(auf Anfrage)				
	Anschluss T	bar	140	140	210
Stellzeit*	für 0 bis 100 % Hub, typisch	ms	44	28	9
Umkehrspanne*		%	< 0,1	< 0,1	< 0,2
Hysterese*		%	< 0,5	< 0,5	< 1
Nullverschiebung	bei ∆T = 55 K	%	< 1	< 1	< 1,5
Leckvolumenstrom*	gesamt max. (~ Null-Überdeckung)	l/min	4,2	5,1	4,5
Leckvolumenstrom*	Vorsteuerstufe allein, typisch	l/min	1,7	2,6	2,0
Steuervolumenstrom*	max., bei 100% Sprungeingang	l/min	1,7	2,6	20
Steuerkolbenhub		mm	± 5	± 5	± 5
Steuerstirnfläche		cm ²	2	2	5

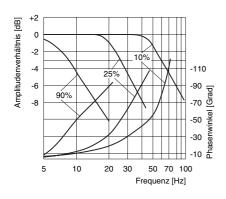

 $^{^{\}star}$ bei 210 bar Steuer- bzw. Betriebsdruck, Ölviskosität 32 mm²/s und Öltemperatur 40 °C ** empfohlener Steueranschluss siehe Hydrauliksymbole

wahlweise X und Y extern	Failsafe-Stellung M bei p _X < 1 bar, nur mit X und Y extern	nur mit X und Y extern	wahlweise X und Y extern
A B P T	A B X Y P T	A B W Y P T	X Y A B P T
4-Wege Ausführung	4-Wege Ausführung federzentriert	2 x 2-Wege Ausführung 3-stufig	4-Wege Ausführung 3-stufig

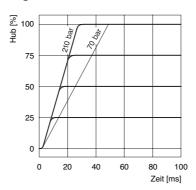
Typische Kennlinien bei 210 bar Steuer- bzw. Betriebsdruck, Ölviskosität 32 mm²/s und Öltemperatur 40°C

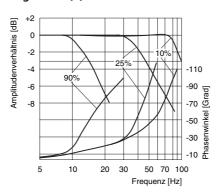

Volumenstrom-Signal-Kennlinien

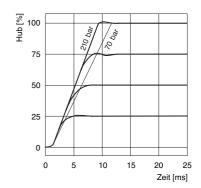
bei $\Delta p_N = 5$ bar je Steuerkante

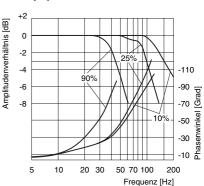


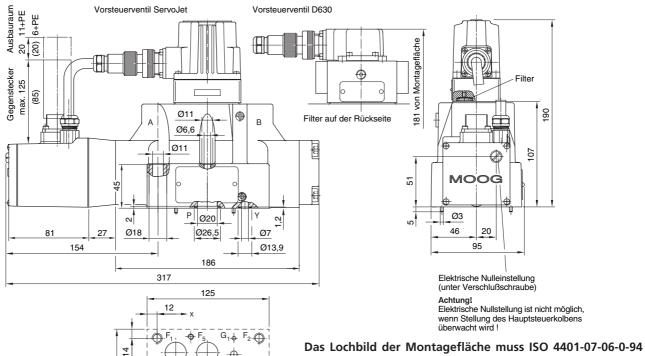
Steuerkolben A: ~Nullüberdeckung, lineare Kennlinie Steuerkolben D: 10 % pos. Überdeckung, lineare Kennlinie Steuerkolben Y: ~Nullüberdeckung, geknickte Kennlinie


Sprungantwort D662- ... D mit ServoJet Vorsteuerventil Standard (A)


Frequenzgang D662- ... D mit ServoJet Vorsteuerventil Standard (A)


Sprungantwort D662- ... D mit ServoJet Vorsteuerventil High flow (B)


Frequenzgang
D662- ... D mit ServoJet Vorsteuerventil
High flow (B)


Sprungantwort D662- ... P mit Vorsteuerventil D630 (M)

Frequenzgang D662- ... P mit Vorsteuerventil D630 (M)

EINBAUZEICHNUNG

Das Lochbild der Montagefläche muss ISO 4401-07-06-0-94 entsprechen.

Für maximalen Volumenstrom sind die Anschlussbohrungen für P, T, A und B entgegen der Norm mit Ø 20 mm auszuführen. Ebenheit der Montagefläche 0,01 mm auf 100 mm, mittlere Rauhtiefe Ra besser 0,8 μ m.

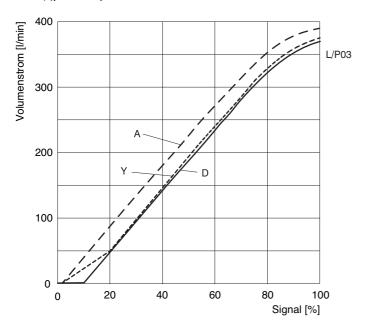
mm

	Р	Α	Т	В	Х	Υ	G₁	G ₂	F ₁	F ₂	F ₃	F ₄	F ₅	F ₆
	Ø20	Ø20	Ø20	Ø20	Ø6,3	Ø6,3	Ø4	Ø4	M10	M10	M10	M10	M6	M6
x	50	34,1	18,3	65,9	76,6	88,1	76,6	18,3	0	101,6	101,6	0	34,1	50
У	14,3	55,6	14,3	55,6	15,9	57,2	0	69,9	0	0	69,9	69,9	-1,6	71,5

98

O-Ringe (gehören zum Lieferumfang)			NBR 85 Shore	FPM 85 Shore	
für P, T, A, B	4 Stück ID 21,89 x Ø 2,6		-45122-129	-42082-129	
für X, Y	2 Stück ID 10,82 x Ø 1,8		-45122-022	-42082-022	
O-Ringe bei Filtertausch, für Vorsteuer	ventil	HNBR 85 Shore	NBR 85 Shore	FPM 85 Shore	
ServoJet: vor Filter	1 Stück ID 14 x Ø 1,0	B97008-014-010		A25163-014-01	
nach Filter	1 Stück ID 13 x Ø 1,5	B97008-013-015		A25163-013-01	
D630: vor und nach Filter	2 Stück ID 13 x Ø 1,5		-66117-013-015	A25163-013-01	
Service Dichtsatz	siehe Seite 29				
Gegenstecker, wasserdicht IP65 (nicht	im Lieferumfang)		verwendbares Kabe	el mit	
6+PE-polig	B97007-061	EN 175201 Teil 804	min. Ø 10 mm, max. Ø 12 mm		
11+PE-polig	B97067-111	EN 175201 Teil 804	min. Ø 11 mm, max	a. Ø 13 mm	
Spülplatte	-76741				
Anschlussplatte	B46891-001				
Befestigungsschrauben (nicht im Liefer	rumfang)	Anzugsmoment	erforderlich		
M 10 x 60 DIN EN ISO 4762 -10.9	A03665-100-060	54 Nm	4 Stück		
M 6 x 55 DIN EN ISO 4762 -10.9	A03665-060-055	11 Nm	2 Stück		
Austauschbarer Filter					
für Vorsteuerventil ServoJet	A67999-200	200 µm nominal			
für Vorsteuerventil D630	A67999-065	65 µm nominal			

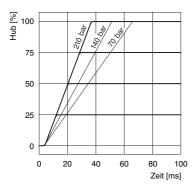
Modell Typ			D663 - L B	D663 - P M	
Lochbild			ISO 4401 - 08 - 07 - 0 - 94		
Ventilausführung			4-Wege,	2 x 2-Wege	
			2-stufig	3-stufig	
			Stufenkolben	Standardkolben	
Vorsteuerventil	Baureihe		ServoJet High flow	D630, 2-stufig	
Steueranschluss	wahlweise intern oder extern**		X und Y	X und Y	
Masse		kg	19	19,5	
Nennvolumenstrom	(±10%) bei ∆p _N = 5 bar	l/min	350	350	
	je Steuerkante				
Betriebsdruck	max.				
Hauptstufe:	Anschluss P, A, B	bar	350	350	
	Anschluss T bei Y intern	bar	140	210	
	Anschluss T bei Y extern	bar	350	350	
Vorsteuerventil:	Serienausführung	bar	280	280	
	über integrierte Vordrossel	bar	350	_	
	(auf Anfrage)				
	Anschluss T	bar	140	210	
Stellzeit*	für 0 bis 100 % Hub, typisch	ms	37	13	
Umkehrspanne*		%	< 0,1	< 0,2	
Hysterese*		%	< 0,5	< 1	
Nullverschiebung	bei ∆T = 55 K	%	< 1	< 1,5	
Leckvolumenstrom*	gesamt max. (~ Null-Überdeckung)	l/min	5,6	5,0	
Leckvolumenstrom*	Vorsteuerstufe allein, typisch	l/min	2,6	2,0	
Steuervolumenstrom*	max., bei 100% Sprungeingang	l/min	2,6	30	
Steuerkolbenhub		mm	± 4,5	± 4,5	
Steuerstirnfläche		cm ²	2,8	11,4	


 $^{^*}$ bei 210 bar Steuer- bzw. Betriebsdruck, Ölviskosität 32 mm²/s und Öltemperatur 40 °C ** empfohlener Steueranschluss siehe Hydrauliksymbole

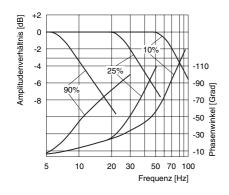
wahlweise X und Y extern	Failsafe-Stellung M bei p _X < 1 bar, nur mit X und Y extern	nur mit X und Y extern	wahlweise X und Y extern
X Y A B P T	A B A Y P T	A B W X Y P T	A B P T
4-Wege Ausführung	4-Wege Ausführung federzentriert	2 x 2-Wege Ausführung 3-stufig	4-Wege Ausführung 3-stufig

Typische Kennlinien bei 210 bar Steuer- bzw. Betriebsdruck, Ölviskosität 32 mm²/s und Öltemperatur 40°C

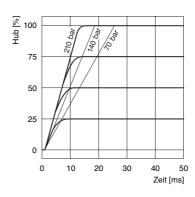
Volumenstrom-Signal-Kennlinien


bei $\Delta p_N = 5$ bar je Steuerkante

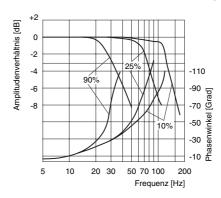
Steuerkolben A: ~Nullüberdeckung, lineare Kennlinie Steuerkolben D: 10 % pos. Überdeckung, lineare Kennlinie Steuerkolben Y: ~Nullüberdeckung, geknickte Kennlinie


Sprungantwort

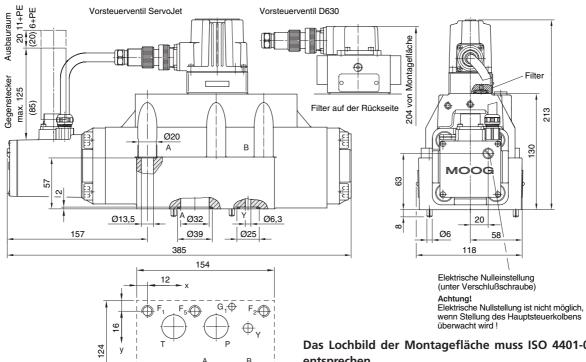
D663- ... L mit ServoJet Vorsteuerventil High flow (B)


Frequenzgang

D663- ... L mit ServoJet Vorsteuerventil High Flow (B)


Sprungantwort

D663- ... P mit Vorsteuerventil D630 (M)



Frequenzgang

D663- ... P mit Vorsteuerventil D630 (M)

EINBAUZEICHNUNG

Das Lochbild der Montagefläche muss ISO 4401-08-07-0-94 entsprechen.

Für maximalen Volumenstrom sind die Anschlussbohrungen für P, T, A und B entgegen der Norm mit Ø 28 mm auszuführen. Ebenheit der Montagefläche 0,01 mm auf 100 mm, mittlere Rauhtiefe Ra besser 0,8 µm.

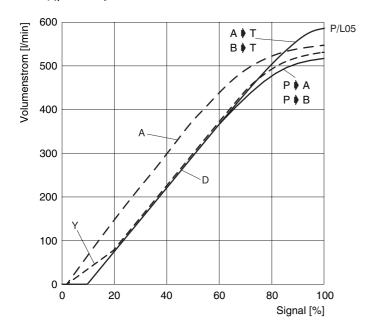
mm

	Р	Α	Т	В	Х	Υ	G₁	G ₂	F ₁	F ₂	F ₃	F ₄	F ₅	F ₆
	Ø28	Ø28	Ø28	Ø28	Ø11,2	Ø11,2	Ø7,5	Ø7,5	M12	M12	M12	M12	M12	M12
x	77	53,2	29,4	100,8	17,5	112,7	94,5	29,4	0	130,2	130,2	0	53,2	77
у	17,5	74,6	17,5	74,6	73	19	-4,8	92,1	0	0	92,1	92,1	0	92,1

O-Ringe (gehören zum Lieferumfang)			NBR 85 Shore	FPM 85 Shore	
für P, T, A, B	4 Stück ID 34,60 x Ø 2,6		-45122-113	-42082-113	
für X, Y	2 Stück ID 20,29 x Ø 2,6		-45122-195	-42082-195	
O-Ringe bei Filtertausch, für Vorsteuerventi	I	HNBR 85 Shore	NBR 85 Shore	FPM 85 Shore	
ServoJet: vor Filter	1 Stück ID 14 x Ø 1,0	B97008-014-010		A25163-014-010	
nach Filter	1 Stück ID 13 x Ø 1,5	B97008-013-015		A25163-013-015	
D630: vor und nach Filter	2 Stück ID 13 x Ø 1,5		-66117-013-015	A25163-013-015	
Service Dichtsatz	siehe Seite 30				
Gegenstecker, wasserdicht IP65 (nicht im Li	eferumfang)		verwendbares Kabel mit		
6+PE-polig	B97007-061	EN 175201 Teil 804	min. Ø 10 mm, max. Ø	ax. Ø 12 mm	
11+PE-polig	B97067-111	EN 175201 Teil 804	min. Ø 11 mm, max. Ø	ð 13 mm	
Spülplatte	-76047-001				
Anschlussplatte	A25855-009				
Befestigungsschrauben (nicht im Lieferumfa	ang)	Anzugsmoment	erforderlich		
M 12 x 75 DIN EN ISO 4762 -10.9	A03665-120-075	94 Nm	6 Stück		
Austauschbarer Filter					
für Vorsteuerventil ServoJet	A67999-200	200 µm nominal			
für Vorsteuerventil D630	A67999-065	65 μm nominal			

TECHNISCHE DATEN

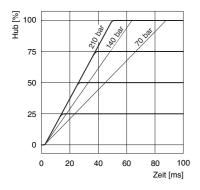
Modell Typ			D664 - L B	D664 - P M
Lochbild				
				08 - 07 - 0 - 94
Ventilausführung			_	2 x 2-Wege
			2-stufig	3-stufig
			Stufenkolben	Standardkolben
Vorsteuerventil	Baureihe		ServoJet High flow	D630, 2-stufig
Steueranschluss	wahlweise intern oder extern**		X und Y	X und Y
Masse		kg	19	19,5
Nennvolumenstrom	(±10%) bei ∆p _N = 5 bar	l/min	550	550
	je Steuerkante			
Betriebsdruck	max.			
Hauptstufe:	Anschluss P, A, B	bar	350	350
	Anschluss T bei Y intern	bar	140	210
	Anschluss T bei Y extern	bar	350	350
Vorsteuerventil:	Serienausführung	bar	280	280
	über integrierte Vordrossel	bar	350	-
	(auf Anfrage)			
	Anschluss T	bar	140	210
Stellzeit*	für 0 bis 100 % Hub, typisch	ms	48	17
Umkehrspanne*		%	< 0,1	< 0,2
Hysterese*		%	< 0,5	< 1
Nullverschiebung	bei ∆T = 55 K	%	< 1	< 1,5
Leckvolumenstrom*	gesamt max. (~ Null-Überdeckung)	l/min	5,6	5,0
Leckvolumenstrom*	Vorsteuerstufe allein, typisch	l/min	2,6	2,0
Steuervolumenstrom*	max., bei 100% Sprungeingang	l/min	2,6	30
Steuerkolbenhub		mm	± 6	± 6
Steuerstirnfläche		cm ²	2,8	11,4

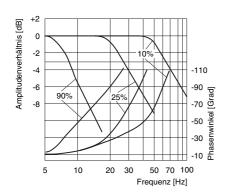

^{*} Bei 210 bar Steuer- bzw. Betriebsdruck, Ölviskosität 32 mm²/s und Öltemperatur 40 °C ** empfohlener Steueranschluss siehe Hydrauliksymbole

wahlweise X und Y extern	Failsafe-Stellung M bei p _X < 1 bar, nur mit X und Y extern	nur mit X und Y extern	wahlweise X und Y extern
XI Y A B T T T	A B W X Y P T	A B W	X Y A B B T T T T T T T T
4-Wege Ausführung	4-Wege Ausführung federzentriert	2 x 2-Wege Ausführung 3-stufig	4-Wege Ausführung 3-stufig

Typische Kennlinien bei 210 bar Steuer- bzw. Betriebsdruck, Ölviskosität 32 mm²/s und Öltemperatur 40°C

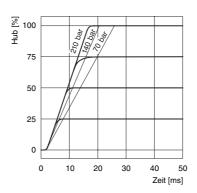
Volumenstrom-Signal-Kennlinien


bei $\Delta p_N = 5$ bar je Steuerkante

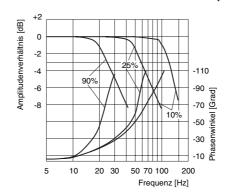

Steuerkolben A: ~Nullüberdeckung, lineare Kennlinie Steuerkolben D: 10 % pos. Überdeckung, lineare Kennlinie Steuerkolben Y: ~Nullüberdeckung, geknickte Kennlinie

Sprungantwort

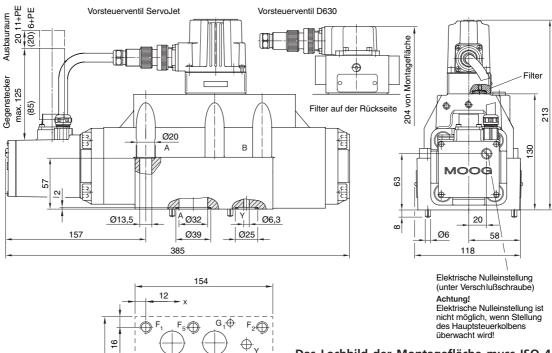
D664- ... L mit ServoJet Vorsteuerventil High flow (B)



Frequenzgang D664- ... L mit ServoJet Vorsteuerventil High flow (B)



Sprungantwort


D664- ... P mit Vorsteuerventil D630 (M)

Frequenzgang D664- ... P mit Vorsteuerventil D630 (M)

EINBAUZEICHNUNG

Das Lochbild der Montagefläche muss ISO 4401-08-07-0-94 entsprechen.

Für maximalen Volumenstrom sind die Anschlussbohrungen für P, T, A und B entgegen der Norm mit Ø 32 mm auszuführen. Ebenheit der Montagefläche 0,01 mm auf 100 mm, mittlere Rauhtiefe Ra besser 0,8 μ m.

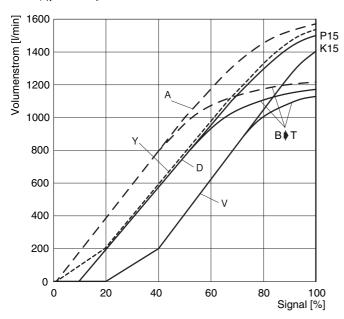
mm

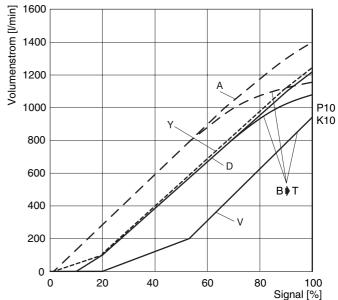
	Р	Α	Т	В	Х	Υ	G₁	G ₂	F ₁	F ₂	F ₃	F ₄	F ₅	F ₆
	Ø32	Ø32	Ø32	Ø32	Ø11,2	Ø11,2	Ø7,5	Ø7,5	M12	M12	M12	M12	M12	M12
Х	77	53,2	29,4	100,8	17,5	112,7	94,5	29,4	0	130,2	130,2	0	53,2	77
у	17,5	74,6	17,5	74,6	73	19	-4,8	92,1	0	0	92,1	92,1	0	92,1

124

O-Ringe (gehören zum Lieferumfa	ng)		NBR 85 Shore	FPM 85 Shore	
für P, T, A, B	4 Stück ID 34,60 x Ø 2,6		-45122-113	-42082-113	
für X, Y	2 Stück ID 20,29 x Ø 2,6		-45122-195	-42082-195	
O-Ringe bei Filtertausch, für Vorste	euerventil	HNBR 85 Shore	NBR 85 Shore FPM 85 Sh		
ServoJet: vor Filter	1 Stück ID 14 x Ø 1,0	B97008-014-010		A25163-014-010	
nach Filter	1 Stück ID 13 x Ø 1,5	B97008-013-015		A25163-013-015	
D630: vor und nach Filter	2 Stück ID 13 x Ø 1,5		-66117-013-015	A25163-013-015	
Service Dichtsatz	siehe Seite 30				
Gegenstecker, wasserdicht IP65 (ni	icht im Lieferumfang)		verwendbares Kabel mit		
6+PE-polig	B97007-061	EN 175201 Teil 804	01 Teil 804 min. Ø 10 mm, max. Ø 12 mm		
11+PE-polig	B97067-111	EN 175201 Teil 804	min. Ø 11 mm, max	c. Ø 13 mm	
Spülplatte	-76047-001				
Anschlussplatte	A25855-009				
Befestigungsschrauben (nicht im Li	eferumfang)	Anzugsmoment	erforderlich		
M 12 x 75 DIN EN ISO 4762 -10.9	A03665-120-075	94 Nm	6 Stück		
Austauschbarer Filter					
für Vorsteuerventil ServoJet	A67999-200	200 µm nominal			
für Vorsteuerventil D630	A67999-065	65 µm nominal			

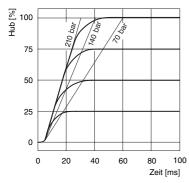
Modell Typ				D665 - P	Н	D665 - P/K	J	
Lochbild				IS	SO 4401 -	10 - 08 - 0 - 94		
Ventilausführung				3-stufig Standardkolb		, 2 x 2-Wege 3-stufig Standardkolben/ Stufenkolben		
Vorsteuerventil		Baureihe		D631, 2-stufi	9	D661 ServoJe	et, 2-stufig	
Steueranschluss				wahlweise X u P10	ind Y ext. P15	immer X und P10/K10	d Y extern P15/K15	
Masse			kg	70		73,	5	
Nennvolumenstrom		(10%) bei $\Delta p_N = 5$ bar/ Steuerkante	l/min	1000	1500	1000	1500	
Betriebsdruck Hauptstufe: Vorsteuerventil:		max. Anschluss P, A, B Anschluss T bei Y intern Anschluss T bei Y extern Serienausführung über integrierte Vordrossel (auf Anfrage) Anschluss T	bar bar bar bar bar	350 100 350 210 315		35(10) 35(28) 35()	
Stellzeit*	Standardkolben Stufenkolben	für 0 bis 100 % Hub, typisch	ms ms	35 _	42 -	24 10	28 12	
Umkehrspanne*			%	< 0,3	< 0,2	< 0,05 / < 0,3	< 0,03 / < 0,2	
Hysterese*			%	< 1	< 0,7	< 0,5 / < 0,3	< 0,3 / < 0,2	
Nullverschiebung		bei T = 55 K	%	< 2	< 1,5	< 1,5 / < 2,5	< 1 / < 2	
Leckvolumenstrom*		gesamt max. (~ Null-Überdeckung)	l/min	10,5		11		
Leckvolumenstrom*		Vorsteuerstufe allein, typisch	l/min	3,5		4		
Steuervolumenstrom*		max., bei 100% Sprungeingang	l/min	45	55	40	50	
Steuerkolbenhub			mm	±6 ±8		± 6	± 8	
Steuerstirnfläche Standardkolben Stufenkolben		P K	cm ²	33,2 -		33, 9,6		

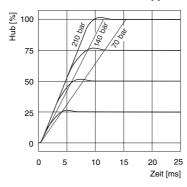

 $^{^{\}star}$ Bei 210 bar Steuer- bzw. Betriebsdruck, Ölviskosität 32 mm²/s und Öltemperatur 40 °C ** empfohlener Steueranschluss siehe Hydrauliksymbole


wahlweise X und Y extern	wahlweise Y extern	nur mit X und Y extern
A B P T	A B X P T	A B W T T T
4-Wege Ausführung	4-Wege Ausführung	2 x 2-Wege Ausführung
3-stufig	3-stufig	3-stufig

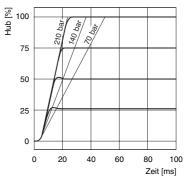
Typische Kennlinien bei 210 bar Steuer- bzw. Betriebsdruck, Ölviskosität 32 mm²/s und Öltemperatur 40°C

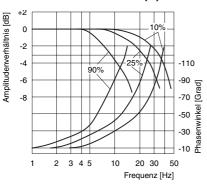
Volumenstrom-Signal-Kennlinien

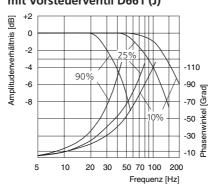

bei $\Delta p_N = 5$ bar je Steuerkante

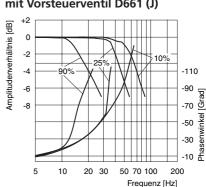


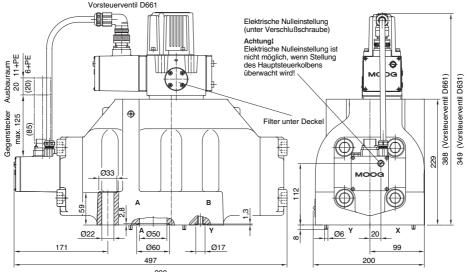
Steuerkolben A: ~Nullüberdeckung, lineare Kennlinie Steuerkolben D: 10 % pos. Überdeckung, lineare Kennlinie Steuerkolben Y: ~Nullüberdeckung, geknickte Kennlinie Steuerkolben V: ~20% Überdeckung, geknickte Kennlinie

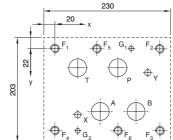

Sprungantwort D665- ... P15 mit Vorsteuerventil D631 (H)


Sprungantwort D665- ... K15 mit Vorsteuerventil D661 (J)


Sprungantwort D665- ... P15 mit Vorsteuerventil D661 (J)


Frequenzgang
D665- ... P15
mit Vorsteuerventil D631 (H)


Frequenzgang D665- ... K15 mit Vorsteuerventil D661 (J)



Frequenzgang D665- ... P15 mit Vorsteuerventil D661 (J)

EINBAUZEICHNUNG

Das Lochbild der Montagefläche muss ISO 4401-10-08-0-94 entsprechen.

Für maximalen Volumenstrom sind die Anschlussbohrungen für P, T, A und B entgegen der Norm mit Ø 50 mm auszuführen. Ebenheit der Montagefläche 0,01 mm auf 100 mm, mittlere Rauhtiefe Ra besser 0,8 µm.

mm

	Р	Α	Т	В	Х	Υ	G ₁	G ₂	F ₁	F ₂	F ₃	F ₄	F ₅	F ₆
	Ø50	Ø50	Ø50	Ø50	Ø11,2	Ø11,2	Ø7,5	Ø7,5	M20	M20	M20	M20	M20	M20
х	114,3	82,5	41,3	147,6	41,3	168,3	147,6*	41,3	0	190,5	190,5	0	76,2	114,3
у	35	123,8	35	123,8	130,2	44,5	0	158,8	0	0	158,8	158,8	0	158,8

* Maß nicht nach ISO sondern nach DIN 24340. Der Sicherheitsstift G1 ist im Ventilkörper vorhanden. Die Bohrung ist bei 138,6 mm.

Kantseal-Dichtringe (gehören zum Liefer	umfang)	HNBR 85 Shore		FPM 85 Shore	
für P, T, A, B	4 Stück ID 53,60 x Ø 3,5	B97217-227H		B97217-227V	
für X, Y	2 Stück ID 14,0 x Ø 1,8	B97217-015H		B97217-015V	
O-Ringe bei Filtertausch für D631 und D6	561	HNBR 85 Shore	NBR 85 Shore	FPM 85 Shore	
für Filter	1 Stück ID 12 x Ø 2,0		-66117-012-020	A25163-012-020	
für Filterdeckel D631 C	1 Stück ID 17 x Ø 2,0			-66117-017-020	
für Filterdeckel D631 F	1 Stück ID 13 x Ø 1,5			A25163-013-015	
für Filterdeckel D661	1 Stück ID 17,1 x Ø 2,6	B97009-080		-42082-080	
Service-Dichtungssatz	siehe Seite 31				
Gegenstecker, wasserdicht IP65 (nicht im	Lieferumfang)		verwendbares Kabel mit		
6+PE-polig	B97007-061	EN 175201 Teil 804	min. Ø 10 mm, max	. Ø 12 mm	
11+PE-polig	B97067-111	EN 175201 Teil 804	min. Ø 11 mm, max	. Ø 13 mm	
Spülplatte	nicht lieferbar				
Anschlussplatte	A25856-001				
Befestigungsschrauben (nicht im Lieferun	mfang)	Anzugsmoment	erforderlich		
M 20 x 90 DIN EN ISO 4762 912-10.9	A03665-200-090	460 Nm	6 Stück		
Austauschbarer Filter					
für Vorsteuerventil D631	A67999-100	100 µm nominal			
für Vorsteuerventil D661	A67999-200	200 µm nominal			

VENTILE FÜR ANWENDUNGEN MIT SICHERHEITSANFORDERUNGEN (FAILSAFE)

Bei Anwendungen mit Proportionalventilen, für die zur Abwendung von Schäden bestimmte Sicherheitsvorschriften gelten, muss für einen sicheren Zustand eine entsprechende Steuerkolbenstellung eingenommen werden können. Für die mehrstufigen Moog Proportionalventile ist daher eine Failsafe Ausführung erhältlich. Diese Failsafe Funktion bewirkt nach externer Auslösung (Abschalten der 24 V Versorgung des Sicherheitsschaltventils) eine sichere Steuerkolbenstellung: Überdeckte Mittelstellung oder voll geöffnete Stellung. Bei 2-stufigen Proportionalventilen werden zur Bewegung in die sichere Mittelstellung über ein 2/2-Wege Sitzventil die beiden Steuerräume der Hauptstufe hydraulisch kurzgeschlossen. Die Federrückstellkraft schiebt den Steuerkolben in den Überdeckungsbereich. Der Zeitablauf bis zum Erreichen der sicheren Steuerkolbenstellung entspricht etwa der Stellzeit der

Sprungantwort, Failsafe Typ **W**. Der Failsafe Typ **P** arbeitet mit Steuerdruckabschaltung. Beide Steuerräurne werden über den Strahlrohrverteiler drucklos gemacht. Die Federrückstellkraft bewegt den Steuerkolben in die Failsafestellung definiert A **→** T. Der Zeitablauf bis zum Erreichen der sicheren Steuerkolbenstellung entspricht dem 4- bis 5 fachen der Ventilschaltzeit aus 100% Steuerkolbenauslenkung. Bei **3-stufigen** Proportionalventilen D665 wird die Failsafe-Funktion über ein 4/2-Wegeventil eingeleitet. Zusätzlich zum hydraulischen Kurzschluß der beiden Steuerräume wird die Druckversorgung zum Vorsteuerventil abgeschaltet. Die Federrückstellkraft bewegt den Steuerkolben in die sichere Failsafestellung. Der Zeitablauf bis zum Erreichen der sicheren Steuerkolbenstellung entspricht dem 2-fachen der Ventilschaltzeit aus 100% Steuerkolbenauslenkung, Failsafe Typ **W** und **U**.

HINWEIS:

Nach DIN-EN 954-1 kann in sicherheitsbezogenen Steuerungen bei Verwendung eines Failsafeventils mit Kolbenstellungsüberwachung eine höhere Sicherheitskategorie erreicht werden. Hierzu sind auch die Sicherheitsnormen der Maschinenhersteller (C-Normen) zu beachten.

ELEKTRISCHE KENNGRÖSSEN

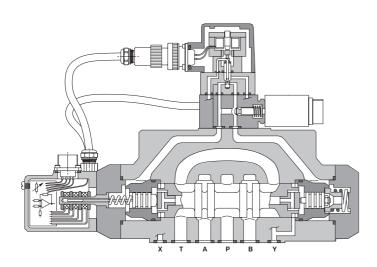
des 4/2-Wegeventils oder 2/2-Wege Sitzventils für die Failsafe Ausführungen. Nähere Informationen zu Failsafe Ausführungen siehe Signal Sollwert Verdrahtung (Seite 32/33, erweiterte Information AM426D).

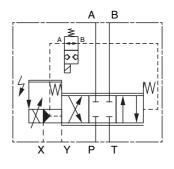
Steckverbindung

DIN EN 175301 Teil 803 mit Freilauf- und Leuchtdiode 2 V₂ V₁ V₁ V₁ V₃ V 1

Ventilbauart

für 2-stufige Ventile 2/2-Wege Sitzventil für 3-stufige Ventile 4/2-Wegeventil Funktion magnetbetätigt


Nennspannung U_N 24 V DC


(min. 22,8 V DC, max. 26,4 V DC)

Nennleistung P_N 2/2-Wege Sitzventil 4/2-Wegeventil

26 W 36 W

2-STUFIGES PROPORTIONALVENTIL BAUREIHE D663/D664 IN STUFENKOLBENAUSFÜHRUNG UND 2/2-WEGE SITZ-VENTIL FÜR DIE FAILSAFE AUSFÜHRUNG

Hydrauliksymbol:

Darstellung im Zustand anstehender Steuerdruck, anliegende Elektronikversorgung und abgeschalteter Versorgung des 2/2-Wege Sitzventils.

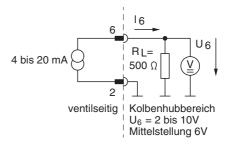
VENTILELEKTRONIK

FAILSAFE VENTILELEKTRONIK MIT VERSORGUNGSSPANNUNG 24 VOLT UND 11+PE-POLIGEM ANBAUSTECKER

Sollwert 0 bis ±10 mA, potentialfrei, Ventile für Stromsollwert

Der Kolbenhub des Ventils ist proportional $I_4 = -I_5$. 100 % Ventilöffnung P \Rightarrow A und B \Rightarrow T bei Sollwert $I_4 = +10$ mA. Bei Sollwert 0 mA steht der Steuerkolben in Mittelstellung. Die Eingänge über Steckerstifte 4 und 5 sind invertierend. Je nach gewünschter Wirkrichtung wird Steckerstift 4 oder 5 angeschlossen. Der andere Steckerstift wird schaltschrankseitig auf Signalquellen-Null gelegt.

Sollwert 0 bis ±10 V


Ventile für Spannungssollwert

Der Kolbenhub des Ventils ist proportional $(U_4 - U_5)$. 100 % Ventilöffnung P \Rightarrow A und B \Rightarrow T bei Sollwert $(U_4 - U_5) = +10$ V. Bei Sollwert 0 V steht der Steuerkolben in Mittelstellung. Der Eingang ist differentiell beschaltet. Steht statt des differentiellen Sollwertes nur ein Ansteuersignal zur Verfügung, so wird, je nach gewünschter Wirkrichtung, Steckerstift 4 oder 5 schaltschrankseitig auf Signalquellen-Null gelegt.

Istwert 4 bis 20 mA

Die Messung des Istwerts, d.h. die Stellung des Steuerkolbens erfolgt am Steckerstift 6 (Schaltbild oben). Damit steht ein Signal für Überwachung und Fehlerdiagnose zur Verfügung. Der gesamte Kolbenhub entspricht 4 bis 20 mA. Bei 12 mA steht der Kolben in Mittelstellung. 20 mA entspricht 100 % Ventilöffnung P → A und B → T.

Schaltung für die Messung des Istwertes I₆ (Stellung des Steuerkolbens) für Ventile mit 11+PE-poligem Stecker (Signal "M, X, D")

(Bei Signaltyp "D" ist R_L in der Ventilelektronik)

Mit dem Istwert-Ausgangssignal 4 bis 20 mA läßt sich ein Kabelbruch bei $I_6 = 0$ mA erkennen.

Zur leichteren Fehlererkennung sollte der Steckerstift 6 des Gegensteckers bis zum Schaltschrank verdrahtet werden.

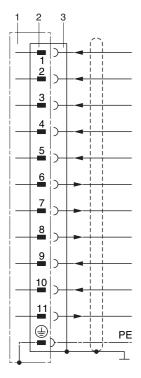
Hinweis zum Freigabesignal

Bei nicht anliegendem bzw. abfallendem Freigabesignal bewegt sich der Hauptsteuerkolben in die sichere Stellung.

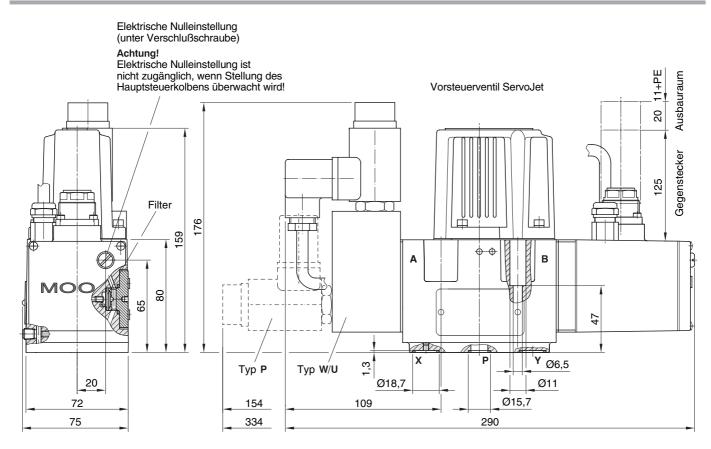
- a) Definierte Mittelstellung, Steuerkolbenstellung ± 3% (unvertrimmtes Vorsteuerventil) Logikfunktion G, J¹⁾
- b) Sichere Endstellung (vertrimmtes Vorsteuerventil) Logikfunktion H¹⁾

ALLGEMEINE ANFORDERUNGEN FÜR VENTILELEKTRONIK

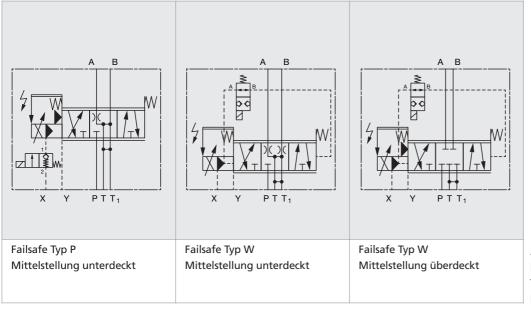
- Versorgung 24 V DC, minimal 18 V DC, maximal 32 V DC Stromaufnahme max. 300 mA für Ventilelektronik.
 Zusätzliche Versorgung 24 V DC Failsafeventil und Stromaufnahme 1,35 A an Stift 9 ⇒10.
- Sämtliche Signalleitungen (auch Messwertaufnehmer) geschirmt
- Schirmungen sternförmig am Netzteil auf ± (0 V) legen und mit Gegensteckergehäuse leitend verbinden (wegen EMV)
- EMV: erfüllt die Anforderungen für Störaussendung gemäß: EN55011:1998+A1:1999 (Grenzwertklasse: B) und Störfestigkeit gemäß: EN61000-6-2:1999


- Mindestquerschnitt für alle Leitungen > 0,75 mm².
 Spannungsabfall zwischen Versorgung und Ventil beachten.
- Hinweis: Beim elektrischen Anschluss des Ventils (Schirm, (4))
 ist sicherzustellen, dass lokale Potentialunterschiede nicht
 zu störenden Erdschleifen mit Ausgleichsströmen führen.
 Siehe auch Moog Technische Notiz TN353.
- 1) siehe Typenschlüssel

VENTILELEKTRONIK

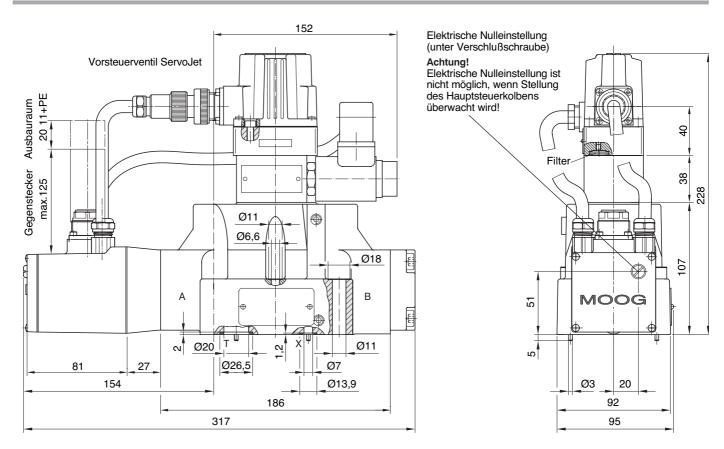

STECKERBELEGUNG FÜR VENTILE MIT 11+PE-POLIGEM STECKVERBINDER MIT INTEGRIERTER FAILSAFE-VERSORGUNG nach EN 175201 Teil 804, Gegenstecker (Metall) mit voreilendem Schutzleiterkontakt (\(\frac{1}{2} \)).

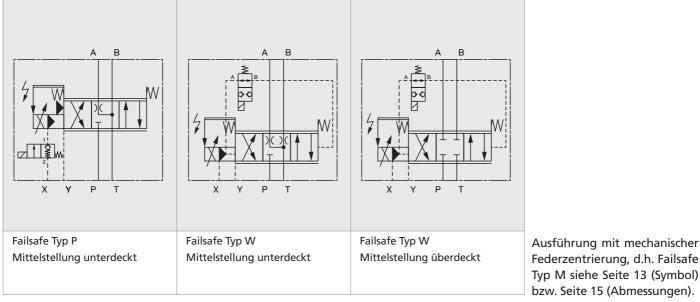
Siehe auch Anwendungsmitteilung, Signal Sollwertverdrahtung AM 426 D (siehe Seite 32/33), Logikfunktion G und H.



- 1 Ventil
- 2 Anbaustecker
- 3 Gegenstecker

Signalart	Spannungssollwert	Stromsollwert				
1 Versorgung	24 V DC (min. 18 V DC, max. 32 V DC)	statisch: I _{max} : 200 mA dynamisch: I _{max} : 300 mA				
2 Versorgung / Signal-Null	⊥ (0 V)					
3 Freigabe keine Freigabe	$U_{3-2} > + 8.5 \text{ V DC}$ $U_{3-2} < + 6.5 \text{ V DC}$ $I_e = 2.0 \text{ mA bei } 24$	V DC, max. 32 V DC				
4 Differentieller 5 Eingang Sollwert	$U_{4-5} = 0 \text{ bis } \pm 10 \text{ V}$ $R_e = 10 \text{ k}\Omega$	$I_4 = -I_5$: 0 bis ± 10 mA ($R_e = 200 \Omega$)				
	Eingangsspannung $\rm U_{4-2}$ und $\rm U_{5-2}$ für beide Signalarten min 15 V und max. + 32 V					
6 Ausgang Istwert Stellung Steuerkolben	$\rm I_{6-2}$ = 4 bis 20 mA. Bei 12 mA ist der Steuerkolben in Mittelstellung. $\rm R_L$ = 100 bis 500 Ω					
	Bei Signalart D: U_{6-2} = 2 bis 10 V. Bei 6 V Mittelstellung. R_L = 500 Ω	ist der Steuerkolben in				
7 Hilfsmesspunkt	Kolbenstellung: $\rm U_{7-2}$ = 3 bis 13 V. Bei 8 V. Mittelstellung. $\rm R_L$ = 5 k Ω	/ ist der Steuerkolben in				
8 Ventilbereitschaft	U ₈₋₂ > +8,5 V DC: Freigabe und Versorgung o U ₈₋₂ < +6,5 V DC: keine Freigabe oder Versor					
9 Versorgung Failsafe Ventil	24 V DC (min. 22,8 V DC, max. 26,4 V DC	C, max. 1,5 A)				
10 Versorgung / Signal-Null Failsafe Ventil	⊥ (0 V)					
11 Ventilüberwachung Failsafestellung	U_{11-2} > +8,5 V DC: sichere Stellung U_{11-2} < +6,5 V DC: keine sichere Stellung	Ausgang: I _{max} : 20 mA				
Schutzleiterkontakt						

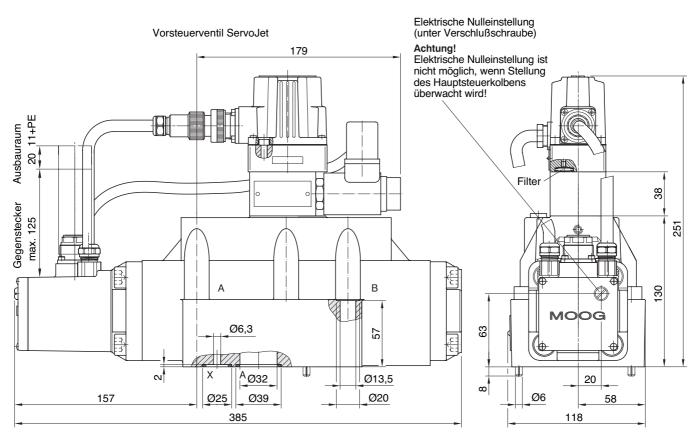

Das Lochbild der Montagefläche muss ISO 4401-05-05-0-94 entsprechen (siehe Seite 12).


Ausführung mit mechanischer Federzentrierung, d.h. Failsafe Typ M siehe Seite 10 (Symbol) bzw. Seite 12 (Abmessungen).

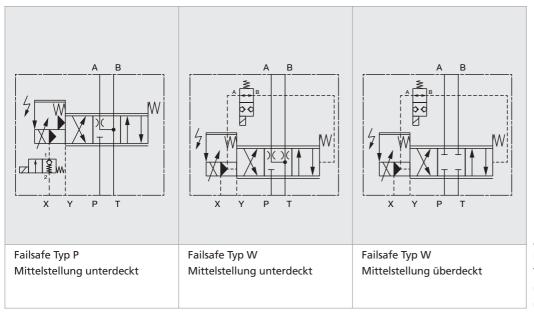
Abmessungen, Ersatzteile und Zubehör siehe Seite 12

	NBR 85 Shore	FPM 85 Shore
Service Dichtsatz	B97215-N661F10	B97215-V661F10

Das Lochbild der Montagefläche muss ISO 4401-07-06-0-94 entsprechen (siehe Seite 15).

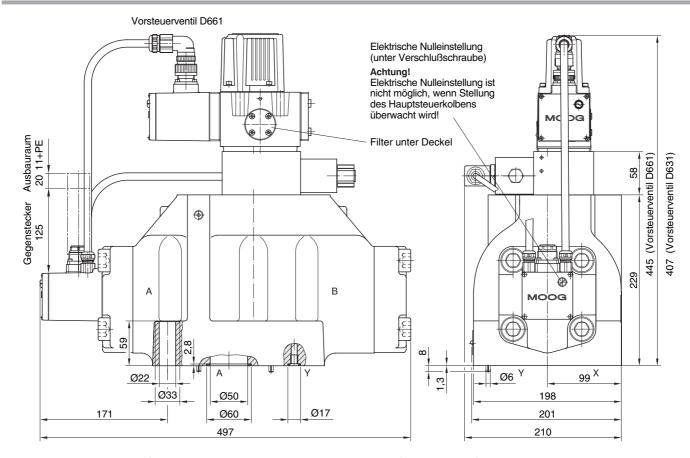


Federzentrierung, d.h. Failsafe Typ M siehe Seite 13 (Symbol) bzw. Seite 15 (Abmessungen).


Abmessungen, Ersatzteile und Zubehör siehe Seite 15

	HNBR 85 Shore	NBR 85 Shore	FPM 85 Shore
Service Dichtsatz Unterstufe		B97215-N6X2-16	B97215-V6X2-16
Service Dichtsatz Vorsteuerventil ServoJet	B97215-H618-06	B97215-N618-06	B97215-V618-06
Service Dichtsatz Vorsteuerventil D630		B97215-N630F63	B97215-V630F63
Service Dichtsatz Failsafe Ventil		B97215-N630F63	B97215-V630F63

FAILSAFE AUSFÜHRUNG


Das Lochbild der Montagefläche muss ISO 4401-08-07-0-94 entsprechen (siehe Seite 18, 21).

Ausführung mit mechanischer Federzentrierung, d.h. Failsafe Typ M siehe Seite 16 und 19 (Symbol) bzw. Seite 18 und 21 (Abmessungen).

Abmessungen, Ersatzteile und Zubehör siehe Seite 18, 21

	HNBR 85 Shore	NBR 85 Shore	FPM 85 Shore
Service Dichtsatz Unterstufe		B97215-N6X4-25	B97215-V6X4-25
Service Dichtsatz Vorsteuerventil ServoJet	B97215-H618-06	B97215-N618-06	B97215-V618-06
Service Dichtsatz Vorsteuerventil D630		B97215-N630F63	B97215-V630F63
Service Dichtsatz Failsafe Ventil		B97215-N630F63	B97215-V630F63

Das Lochbild der Montagefläche muss ISO 4401-10-08-0-94 entsprechen (siehe Seite 24).

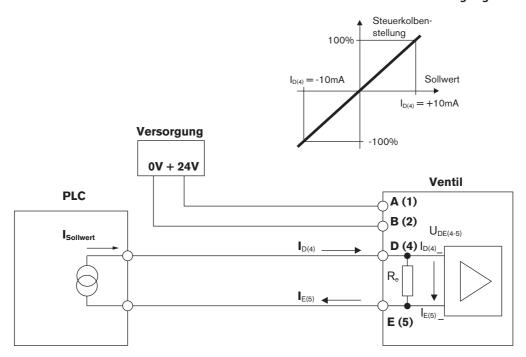
Ausführung mit mechanischer Federzentrierung, d.h. Failsafe Typ M siehe Seite 22 (Symbol) bzw. Seite 24 (Abmessungen).

Abmessungen, Ersatzteile und Zubehör siehe Seite 24

	HNBR 85 Shore	NBR 85 Shore	FPM 85 Shore
Service Dichtsatz Unterstufe	B97215-S6X5-32		B97215-K6X5-32
Service Dichtsatz Vorsteuerventil D631		B97215-N631F63	B97215-V631F63
Service Dichtsatz Vorsteuerventil D661		B97215-N661F10	B97215-V661F10
Service Dichtsatz Failsafe Ventil		B97215-N661F10	B97215-V661F10

SIGNAL SOLLWERTVERDRAHTUNG

ANALOGER EINGANG 6+PE UND 11+PE


Sollwert 0 bis ± 10 mA potentialfrei, Ventile für Stromsollwert

Der Steuerkolbenhub ist proportional zu $I_{D(4)} = -I_{E(5)}$.

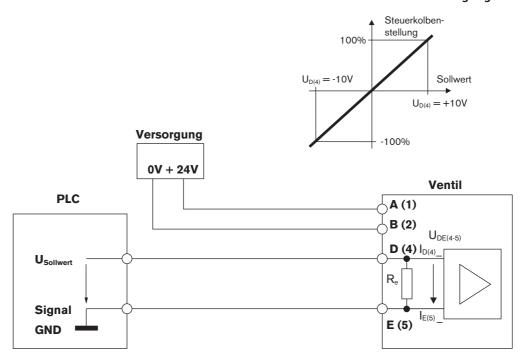
Bei Sollwert $I_{D(4)}$ = +10 mA Eingang bewegt sich der Steuerkolben 100% P → A und B → T.

Bei Sollwert $I_{D(4)} = 0$ mA, Steuerkolben in definierter Mittelstellung.

Lagesignal-Kurve

SIGNAL SOLLWERTVERDRAHTUNG

ANALOGER EINGANG 6+PE UND 11+PE

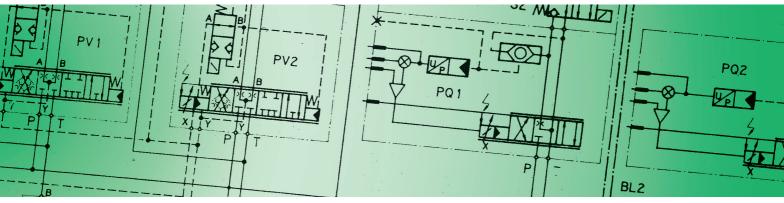

Sollwert 0 bis \pm 10 V potentialfrei, Ventile für Spannungssollwert

Der Steuerkolbenhub ist proportional zu $U_{D(4)}$.

Bei Sollwert $U_{D(4)} = +10 \text{ V}$ Eingang bewegt sich der Steuerkolben 100% $P \Rightarrow A$ und $B \Rightarrow T$.

Bei Sollwert $U_{D(4)} = 0 V$, Steuerkolben in definierter Mittelstellung.

Lagesignal-Kurve


		D66	1 bis D665	Modell N	ummer		ezeichnung 2 3 4
Sp	ezifikation	s-Status					
	Serien-Spe						
		Spezifikatione	n				
		ezifikationen	=\				
K	Ex-Schutz	(nicht für D 66	5)				
-	odellbezeic wird vom \	hnung Werk festgeleg	t				
We	erkskennur	ng					
1	Vantil Tun		Baureihe				
	Ventil-Typ Standardk	alban	D661 bis D665				
	Standardk						
		on Ø 13 mm	D661 (5 Wege)				
			D662 D663 und D664				
		oen Ø 19 mm oen Ø 35 mm	D665 und D664				
			5005				
2	Nennvolui	menstrom pei p _N = 5 bar j	ie Steuerkante	Baureihe	1		
30	QN [MIIIII] E	30	e Steachante	D661			
60		60		D661			
80		80		D661			
01		150		D662			
02		250		D662			
03		350		D663			
05		550		D664			
10		1000		D665			
15		1500		D665			
3	Maximal =	ulässiaar Batri	obedmiek n		Voret	euerventil	
<u> </u>		ulässiger Betri meter der Ven	tilelektronik sind	auf den	VOISU	euerventii	
- 1				aar acri			
		ck abgestimmt					
F		ck abgestimmt Bei p. = 210 b			Н		
F	210 bar	Bei $p_x = 210 \text{ b}$	ar (X u. Y extern		Н		
F		Bei $p_x = 210 \text{ b}$ ist Betriebsdru			Н		
F		Bei $p_x = 210 \text{ b}$ ist Betriebsdru B und T bis 35	ar (X u. Y extern) ick im Anschluss I	P, A,	H A/B/	/ J / M	
	210 bar	Bei $p_x = 210 \text{ b}$ ist Betriebsdru B und T bis 35 Bei $p_x = 280 \text{ b}$	ar (X u. Y extern ıck im Anschluss I 0 bar möglich.	P, A,		/ J / M	
	210 bar	Bei $p_x = 210 \text{ b}$ ist Betriebsdru B und T bis 35 Bei $p_x = 280 \text{ b}$ ist Betriebsdru	ar (X u. Y extern ick im Anschluss I 0 bar möglich ar (X u. Y extern	P, A,		/ J / M	
	210 bar	Bei $p_x = 210 \text{ b}$ ist Betriebsdru B und T bis 35 Bei $p_x = 280 \text{ b}$ ist Betriebsdru B und T bis 35	ar (X u. Y extern ock im Anschluss I 0 bar möglich. oar (X u. Y extern ock im Anschluss I	P, A, P, A,			
н	210 bar 280 bar	Bei $p_x = 210 \text{ b}$ ist Betriebsdru B und T bis 35 Bei $p_x = 280 \text{ b}$ ist Betriebsdru B und T bis 35	ar (X u. Y extern ick im Anschluss I 0 bar möglich ar (X u. Y extern ick im Anschluss I 0 bar möglich ventil D630 und I	P, A, P, A,	A / B /		
н к х	210 bar 280 bar 350 bar	Bei $p_x = 210$ b ist Betriebsdru B und T bis 35 Bei $p_x = 280$ b ist Betriebsdru B und T bis 35 Nicht im Pilots Sonderausfüh	ar (X u. Y extern ick im Anschluss I 0 bar möglich. iar (X u. Y extern ick im Anschluss I 0 bar möglich. ventil D630 und I rung	P, A, P, A,	A / B /		
H K X	210 bar 280 bar 350 bar	Bei $p_x = 210$ b ist Betriebsdru B und T bis 35 Bei $p_x = 280$ b ist Betriebsdru B und T bis 35 Nicht im Pilots Sonderausfüh	ar (X u. Y extern ck im Anschluss I 0 bar möglich. ar (X u. Y extern ck im Anschluss I 0 bar möglich. ventil D630 und I rung	P, A, P, A, D631	A / B /		
H K X	280 bar 350 bar Hauptsteu 4-Wege:	Bei p _x = 210 b ist Betriebsdru B und T bis 35 Bei p _x = 280 b ist Betriebsdru B und T bis 35 Nicht im Piloto Sonderausfüh erkolben - Aus ~ Null-Überde	ar (X u. Y externick im Anschluss I 0 bar möglich. Iar (X u. Y externick im Anschluss I 0 bar möglich. I ventil D630 und I I rung Etührung Etkung, lineare K	P, A, P, A, PG31	A/B/		
H K X	210 bar 280 bar 350 bar	Bei p _x = 210 b ist Betriebsdru B und T bis 35 Bei p _x = 280 b ist Betriebsdru B und T bis 35 Nicht im Piloto Sonderausfüh erkolben - Aus ~ Null-Überde 10 % positive	ar (X u. Y extern lock im Anschluss I 0 bar möglich lar (X u. Y extern lock im Anschluss I 0 bar möglich ventil D630 und I rung etkung, lineare K Überdeckung, li	P, A, P, A, Possible ennlinie neare Kennl	A/B/ A/B/	' J	
H K X	280 bar 350 bar Hauptsteu 4-Wege: 4-Wege:	Bei p _x = 210 b ist Betriebsdru B und T bis 35 Bei p _x = 280 b ist Betriebsdru B und T bis 35 Nicht im Piloto Sonderausfüh erkolben - Aus ~ Null-Überda 10 % positive P ♣ A, A ♣ T: ~	ar (X u. Y externick im Anschluss I 0 bar möglich. Iar (X u. Y externick im Anschluss I 0 bar möglich. I ventil D630 und I I rung Etührung Etkung, lineare K	ennlinie neare Kennl	A/B/ A/B/ inie e Kennlin	/ J	
H K X	280 bar 350 bar Hauptsteu 4-Wege: 4-Wege:	Bei p _x = 210 b ist Betriebsdru B und T bis 35 Bei p _x = 280 b ist Betriebsdru B und T bis 35 Nicht im Piloto Sonderausfüh erkolben - Aus ~ Null-Überda 10 % positive P \(\) A, A \(\) T: ~ P \(\) B: 60 % po	ar (X u. Y externick im Anschluss I 0 bar möglich. ar (X u. Y externick im Anschluss I 0 bar möglich. ventil D630 und I rung eckung, lineare K Überdeckung, li Null-Überdeckur	ennlinie ennlinie neare Kennl ng, geknickte	A / B / A / B / inie e Kennlin te Kennlin	/ J nie, inie	
H K X 4 A D P	280 bar 350 bar Hauptsteu 4-Wege: 4-Wege:	Bei p _x = 210 b ist Betriebsdru B und T bis 35 Bei p _x = 280 b ist Betriebsdru B und T bis 35 Nicht im Piloto Sonderausfüh erkolben - Aus ~ Null-Überde 10 % positive P \(\) A, A \(\) T: P \(\) B: 60 % po B \(\) T: 50 % ne P \(\) A, P ₁ \(\) B, A	ar (X u. Y externick im Anschluss I 0 bar möglich. Iar (X u. Y externick im Anschluss I 0 bar möglich. I berdeckung, lineare K I berdeckung, lineare K I berdeckungstive Überdeckungstive Üb	ennlinie neare Kennl ng, geknickt ung, geknick ung, lineare deckung,	A / B / A / B / inie e Kennlin te Kennlin	/ J nie, inie	
H K X 4 A D P	280 bar 280 bar 350 bar Hauptsteu 4-Wege: 4-Wege: 4-Wege:	Bei $p_x = 210$ b ist Betriebsdru B und T bis 35 Bei $p_x = 280$ b ist Betriebsdru B und T bis 35 Nicht im Pilots Sonderausfüh erkolben - Aus ~ Null-Überde 10 % positive P \triangleright A, A \triangleright T: ~ \triangleright B: 60 % po B \triangleright T: 50 % ne P \triangleright A, P \triangleright B, A geknickte Kei	ar (X u. Y externick im Anschluss I 0 bar möglich. ar (X u. Y externick im Anschluss I 0 bar möglich. ventil D630 und I rung stührung sckung, lineare K Überdeckung, li Null-Überdeckur scitive Überdeck	ennlinie neare Kennl ng, geknickt ung, geknick ung, lineare deckung, -B)	A/B/ A/B/ inie e Kennlini te Kennlini	/ J nie, inie	
H K X 4 A D P	280 bar 280 bar 350 bar Hauptsteu 4-Wege: 4-Wege: 5-Wege: 4-Wege:	Bei p _x = 210 b ist Betriebsdru B und T bis 35 Bei p _x = 280 b ist Betriebsdru B und T bis 35 Nicht im Pilots Sonderausfüh erkolben - Aus ~ Null-Überde 10 % positive P \(\) A, A \(\) T: ~ P \(\) B: 60 % po B \(\) T: 50 % no P \(\) A, P \(\) B, A geknickte Kei 10 % positive	ar (X u. Y externick im Anschluss I 0 bar möglich. Iar (X u. Y externick im Anschluss I 0 bar möglich. Ick im Anschluss I 0 bar möglich. Iventil D630 und I I I rung I stührung I seckung, lineare K Überdeckung, li I berdeckung, li I berdeckung I berdeckung, g	ennlinie neare Kennl ng, geknickt ung, lineare deckung, -B) eknickte Kei	A/B/ A/B/ inie e Kennlini te Kennlini	/ J nie, inie	
H K X 4 A D P U R Y	210 bar 280 bar 350 bar Hauptsteu 4-Wege: 4-Wege: 4-Wege: 4-Wege: 4-Wege: 4-Wege:	Bei p _x = 210 b ist Betriebsdru B und T bis 35 Bei p _x = 280 b ist Betriebsdru B und T bis 35 Nicht im Pilots Sonderausfüh erkolben - Aus ~ Null-Überde 10 % positive P \(\) A, A \(\) T: ~ P \(\) B: 60 \(\) no P \(\) A, P ₁ \(\) B, geknickte Kei 10 % positive ~ Null-Überde	ar (X u. Y externick im Anschluss I 0 bar möglich. Iar (X u. Y externick im Anschluss I 0 bar möglich. Iventil D630 und I I I I I I I I I I I I I I I I I I I	ennlinie ennlinie neare Kennl ig, geknickt ung, glineare deckung, -B) eknickte Keie	A/B/ A/B/ inie e Kennlin te Kennlin Kennlinie	/ J nie, inie	
H K X 4 A D P U R Y	210 bar 280 bar 350 bar Hauptsteu 4-Wege: 4-Wege: 4-Wege: 4-Wege: 4-Wege: 4-Wege:	Bei p _x = 210 b ist Betriebsdru B und T bis 35 Bei p _x = 280 b ist Betriebsdru B und T bis 35 Nicht im Piloto Sonderausfüh erkolben - Aus ~ Null-Überde 10 % positive P \(\) A, A \(\) T: ~ P \(\) B: 60 % po B \(\) T: 50 % ne P \(\) A, P ₁ \(\) B, A geknickte Kei 10 % positive ~ Null-Überde A \(\) T, B \(\) T ₁ :	ar (X u. Y externick im Anschluss I 0 bar möglich. Iar (X u. Y externick im Anschluss I 0 bar möglich. Iventil D630 und I I I I I I I I I I I I I I I I I I I	ennlinie ennlinie neare Kennl ng, geknickt ung, geknicktung, deckung, -B) eknickte Ken e Kennlinie nie nach An	A / B / A / B / inie e Kennlin te Kennlin Kennlinie nnlinie	/ J nie, inie e	
H K X 4 A D P U R Y Z	210 bar 280 bar 350 bar Hauptsteu 4-Wege: 4-Wege: 4-Wege: 4-Wege: 4-Wege: 2x2-Wege:	Bei p _x = 210 b ist Betriebsdru B und T bis 35 Bei p _x = 280 b ist Betriebsdru B und T bis 35 Nicht im Pilots Sonderausfüh erkolben - Aus ~ Null-Überde 10 % positive P \(\) A, A \(\) T: ~ P \(\) B: 60 \(\) no P \(\) A, P ₁ \(\) B, geknickte Kei 10 % positive ~ Null-Überde	ar (X u. Y externick im Anschluss I 0 bar möglich. Iar (X u. Y externick im Anschluss I 0 bar möglich. I o bar deckung, li I o bar deckung. I	ennlinie ennlinie neare Kennl ng, geknickt ung, geknicktung, deckung, -B) eknickte Ken e Kennlinie nie nach An	A / B / A / B / inie e Kennlin te Kennlin Kennlinie nnlinie	/ J nie, inie e	
H K X 4 A D P U R Y Z X	210 bar 280 bar 350 bar Hauptsteu 4-Wege: 4-Wege: 4-Wege: 4-Wege: 4-Wege: 5-Wege: 5-Wege: 5-Wege:	Bei p _x = 210 b ist Betriebsdru B und T bis 35 Bei p _x = 280 b ist Betriebsdru B und T bis 35 Nicht im Piloto Sonderausfüh erkolben - Aus ~ Null-Überde 10 % positive P \(\) A, A \(\) T: ~ P \(\) B: 60 % po B \(\) T: 50 % ne P \(\) A, P ₁ \(\) B, A geknickte Kei 10 % positive ~ Null-Überde A \(\) T, B \(\) T,: P \(\) T, T \(\) A ben auf Anfrage	ar (X u. Y externick im Anschluss I 0 bar möglich. ar (X u. Y externick im Anschluss I 0 bar möglich. ventil D630 und I rung eckung, lineare K Überdeckung, li Null-Überdeckur ssitive Überdeckur sitive Überdeckur jahr: – Null-Über Überdeckung, g eckung, geknickt D661, Kennli D662 bis D66	ennlinie neare Kennl ng, geknickt ung, lineare deckung, -B) eknickte Ker e Kennlinie nie nach An	A / B / A / B / inie e Kennlin te Kennlin Kennlinie nnlinie	/ J nie, inie e	
H K X 4 A D P U R Y Z X	210 bar 280 bar 350 bar Hauptsteu 4-Wege: 4-Wege: 4-Wege: 4-Wege: 5-Wege: 5-Wege: 5-Wege: 5-Wege: Vorsteuer	Bei p _x = 210 b ist Betriebsdru B und T bis 35 Bei p _x = 280 b ist Betriebsdru B und T bis 35 Nicht im Piloto Sonderausfüh erkolben - Aus ~ Null-Überda 10 % positive P \(\) A, A \(\) T: ~ P \(\) B: 60 % po B \(\) T: 50 % na P \(\) A, P ₁ \(\) B, A geknickte Kei 10 % positive A \(\) T, B \(\) T ₁ : P \(\) T, T \(\) A ben auf Anfrag	ar (X u. Y externick im Anschluss I 0 bar möglich. ar (X u. Y externick im Anschluss I 0 bar möglich. ventil D630 und I rung eckung, lineare K Überdeckung, li Null-Überdeckur ositive Überdeckur ositive Überdeckur onlinie (nur D661 Überdeckung, g eckung, geknickt D661, Kennli D662 bis D66 ge	ennlinie ennlinie neare Kennl ng, geknickte ung, lineare deckung, -B) eknickte Ker e Kennlinie nie nach An 15, Kennlinie	A / B / A / B / inie e Kennlin te Kennlin Kennlinie nnlinie	/ J nie, inie e	
H K X 4 A D P U R Y Z X 5 A	210 bar 280 bar 350 bar Hauptsteu 4-Wege: 4-Wege: 4-Wege: 4-Wege: 5-Wege: 5-Wege: 5-Wege: 5-Wege: 5-Wege:	Bei p _x = 210 b ist Betriebsdru B und T bis 35 Bei p _x = 280 b ist Betriebsdru B und T bis 35 Nicht im Pilotv Sonderausfüh erkolben - Aus ~ Null-Überde 10 % positive P \ A, A \ T: P \ B: 60 % po B \ T: 50 % no P \ A, P ₁ \ B, A geknickte Kei 10 % positive ~ Null-Überde A \ T, B \ T; P \ T, T \ A ben auf Anfrag /entil	ar (X u. Y externick im Anschluss I 0 bar möglich. ar (X u. Y externick im Anschluss I 0 bar möglich. ventil D630 und I rung stührung sckung, lineare K Überdeckung, li Null-Überdeckung, ge stührung stührung schung schung schung, geknickt D661, Kennli D662 bis D66 ge Ventil- ard D661	ennlinie ennlinie neare Kennl ng, geknickte ung, lineare deckung, -B) eknickte Ker e Kennlinie nie nach An 15, Kennlinie	A / B / A / B / inie e Kennlin te Kennlini Kennlinie frage r nach An	ie, inie ie	
H K X 4 A D P U R Y Z X 5 A B	210 bar 280 bar 350 bar Hauptsteu 4-Wege: 4-Wege: 4-Wege: 4-Wege: 5-Wege: 5-Wege: 5-Wege: Vorsteuen ServoJet ServoJet	Bei p _x = 210 b ist Betriebsdru B und T bis 35 Bei p _x = 280 b ist Betriebsdru B und T bis 35 Nicht im Pilotv Sonderausfüh erkolben - Aus ~ Null-Überde 10 % positive P \(^1\) A, A \(^1\) T: ~ P \(^1\) B: 60 % pe B \(^1\) T: 50 % ne P \(^1\) A, P \(^1\) B, A geknickte Kei 10 % positive ~ Null-Überde A \(^1\) T, F \(^1\) T; P \(^1\) T, T \(^1\) A ben auf Anfrag ventil Standa	ar (X u. Y externick im Anschluss I 0 bar möglich. ar (X u. Y externick im Anschluss I 0 bar möglich. ar (X u. Y externick im Anschluss I 0 bar möglich. yentil D630 und I rung stührung sckung, lineare K Überdeckung, li Null-Überdeckung, li ventil Überdeckung, getwickte p661, Kennli p662 bis D66 ge Ventil- ard D661. low D661.	ennlinie neare Kennl ng, geknickte ung, lineare deckung, -B) eknickte Ker e Kennlinie nie nach An 55, Kennlinie Typ P, D662D P, D662D	A / B / A / B / A / B / A / B	ie, inie ie	
H K X 4 A D P U R Y Z X 5 A B M	210 bar 280 bar 350 bar Hauptsteu 4-Wege: 4-Wege: 4-Wege: 4-Wege: 5-Wege: 5-Wege: 5-Wege: 5-Wege: 5-Wege:	Bei p _x = 210 b ist Betriebsdru B und T bis 35 Bei p _x = 280 b ist Betriebsdru B und T bis 35 Nicht im Filoto Sonderausfüh erkolben - Aus ~ Null-Überde 10 % positive P \(\) A, A \(\) T: \(\) P \(\) B: 60 % pe B \(\) T: 50 % ne P \(\) A, P \(\) \(\) B geknickte Kei 10 % positive ~ Null-Überde A \(\) T, B \(\) T,: P \(\) T, T \(\) A ben auf Anfrag ventil Standa High f 2-stufi	ar (X u. Y externick im Anschluss I 0 bar möglich. ar (X u. Y externick im Anschluss I 0 bar möglich. ar (X u. Y externick im Anschluss I 0 bar möglich. yentil D630 und I rung stührung sckung, lineare K Überdeckung, li Null-Überdeckung, li ventil Überdeckung, getwickte p661, Kennli p662 bis D66 ge Ventil- ard D661. low D661.	ennlinie ennlinie neare Kennl ng, geknickt ung, geknickt ung, lineare deckung, -B) eknickte Ken e Kennlinie nie nach An 15, Kennlinie Typ P, D662D P, D662D P, D663P, I	A / B / A / B / A / B / A / B	ie, inie ie	

Optionen teilweise nur gegen Aufpreis. Nicht alle Kombinationsmöglichkeiten lieferbar. Bevorzugte Ausführungen sind grau markiert. Änderungen vorbehalten.

6 7	8	9 1	0 11	12 13									
	ı.		2										
				13	Logikfunkti	ion					Ventil- Anbaustecker	Steckerbelegung Seite	Failsafe- Funktion
				0	Kein Freigak	oesignal. S	tift C nich	t belegt.			S	7	0
				Α	Freigabesign			_	-		S	7	F/D/M
		geht Steuerkolben in einstellbare Nullstellun B Freigabesignal: Nach Abfall des Freigabesign geht Steuerkolben in die definierte Stellung A > T bzw. B > T C Freigabesignal: Nach Abfall des Freigabesign geht Steuerkolben in die einstellbare Nullste Mit Stellungsüberwachung - Logikfenster					signals		S	7	F/D		
							llstellung		E	9	F/D/M		
				E	Freigabesigr geht Steuerl	nal: Nach A kolben in (Abfall des die einste	Freigabe Ilbare Nu	signals		E	9	F/D/M
				G	Ventilüberw Freigabesigr geht Steuerl	nal: Nach A kolben in (Abfall des die einste	Freigabe Ilbare Nu	llstellung		Е	27	W/U/P mit integriertem
				н	Mit Stellung Mit Stellung Freigabesigr geht Steuerk Mit Stellung	süberwach nal: Nach A colben in c	hung - Lo Abfall des lie definie	gikfenste Freigabe erte Stellu	r signals ng A > T l	ozw. B > T	E	27	Failsafe Ventil U / P mit integriertem Failsafe Ventil
					ktrische Ver	sorgung		gikieriste	'				
				2 24	V DC (18	bis 32 V D	OC)						
			10		le für 100 % i ng Meßausg		b		Sted	·ker			
				10 V	10 V (dif	f.)			E				
				10 V 10 V	2 bis 10 \ 4 bis 20 r				E / S				
				10 V		Totbandk	ompensa ⁻	tion (diff.)					
				10 m/	4 bis 20 r e auf Anfrag	nA, poten	tialfrei		E / S				
	9	E S Di N NEW FP HM	6 - chtu BR S M S	+ PE-p + PE-p Ingswe Standa Sonder (nur B	olig EN	1 175201-8 1 175201-8 5)							
		Steue Zulau		Abla	uf Y		ener Stei drauliksy	ueranschl mbole	uss				
	5 6	nterr exter exter nterr	n n	inter inter exter exter	rn rn								
				_	Hauptstufe :		elektr. od	er hydr. V	ersorgun	g (Failsafe F	unktion)		
0					Failsafe Funl afe Ausführu					für alle Ve	entiltypen		
	Stel	lung		: railSã	iie Ausiunfu	p _p oder	p _x extern	[bar]			e mit Vorsteuer	ventil	
F	P∳I	В, А ▮	T			≥ 25 < 1				A, B und I A und B	M		
D	Ρ .	А, В 🛭	Т			≥ 25 < 1				A, B und N A und B	M		
М	Mit	telste	llun	g defi g und g defi	efiniert	≥ 1 ≥ 1 ≥ 1	< 1 ≥ 25 ≥ 25			A und B A und B	ብ (nur 2x2 Weg	e)	
			h be	tätigt	e Failsafe Au	_	n [h1	\A\\\\ ²	VE13	für Mantil	n mit Varet	wontil	
w	Mit			g defi g defi		$p_P[bar]$ ≥ 1	$p_x[bar]$ ≥ 25 < 1	aus an	VEL ³ an an	alle Typen nur A und		ventii	
U	und	lefini	ert	g defi		≥ 1 ≥ 1	≥ 25 ≥ 25	an aus	aus an	alle Typen alle Typen			
	defi	iniert	P∳	В, А ▶		≥ 1	≥ 25	an	aus	alle Typen			
Р		iniert iniert		T, B, A ∲	Т	> 1 < 1	≥ 25 < 1	aus an	an aus	nur A und nur A und			

² WV Wegeventil, ³ VEL Ventilelektronik

Italien
Japan
Korea
Luxemburg
Norwegen
Österreich
Russland
Schweden
Singapur
Spanien
Südafrika
USA

Irland

MOOG

Moog GmbH
Hanns-Klemm-Straße 28
71034 Böblingen
email: sales@moog.de
www.moog.de
Telefon (0 70 31) 622-0
Telefax (0 70 31) 622-191
Weitere Niederlassungen in Ihrer Nähe finden
Sie unter: www.moog.com / worldwide